Browse Source

Chapter 28 is coming together.

Herbert Wolverson 4 years ago
parent
commit
1c8726d106

+ 1 - 0
.vscode/spellright.dict

@@ -30,3 +30,4 @@ Automota
 Voronoi
 Tommi
 Jalkanen
+Cogmind

+ 1 - 0
book/src/SUMMARY.md

@@ -24,6 +24,7 @@
     - [Magic Mapping](./chapter_20.md)
     - [REX Paint Menu](./chapter_21.md)
     - [Simple Traps](./chapter_22.md)
+- [Section 3 - Generating Maps](./chapter23-prefix.md)
     - [Refactor Map Building](./chapter_23.md)
     - [Map Building Test Harness](./chapter_24.md)
     - [BSP Room Dungeons](./chapter_25.md)

BIN
book/src/c28-s1.gif


+ 19 - 0
book/src/chapter23-prefix.md

@@ -0,0 +1,19 @@
+# Section 3 - Procedurally Generating Maps
+
+---
+
+***About this tutorial***
+
+*This tutorial is free and open source, and all code uses the MIT license - so you are free to do with it as you like. My hope is that you will enjoy the tutorial, and make great games!*
+
+*If you enjoy this and would like me to keep writing, please consider supporting [my Patreon](https://www.patreon.com/blackfuture).*
+
+---
+
+This started out as part of section 2, but I realized it was a *large*, open topic. The larger roguelike games, such as Dungeon Crawl Stone Soup, Cogmind, Caves of Qud, etc. all have a variety of maps. Section 3 is all about map building, and will cover many of the available algorithms for procedurally building interesting maps.
+
+---
+
+Copyright (C) 2019, Herbert Wolverson.
+
+---

+ 295 - 1
book/src/chapter_28.md

@@ -12,7 +12,301 @@
 
 Ever wondered what would happen if an Umber Hulk (or other tunneling creature) got *really* drunk, and went on a dungeon craving bender? The *Drunkard's Walk* algorithm answers the question - or more precisely, what would happen if a *whole bunch* of monsters had far too much to drink. As crazy it sounds, this is a good way to make organic dungeons.
 
-As usual, we'll start with scaffolding from the previous map tutorials. We've done it enough that it should be old hat by now! In `map_builders/drunkard.rs`, build a new `DrunkardsWalkBuilder` class. We'll keep the zone-based placement from Cellular Automata - but remove the map building code.
+## Initial scaffolding
+
+As usual, we'll start with scaffolding from the previous map tutorials. We've done it enough that it should be old hat by now! In `map_builders/drunkard.rs`, build a new `DrunkardsWalkBuilder` class. We'll keep the zone-based placement from Cellular Automata - but remove the map building code. Here's the scaffolding:
+
+```rust
+use super::{MapBuilder, Map,  
+    TileType, Position, spawner, SHOW_MAPGEN_VISUALIZER};
+use rltk::RandomNumberGenerator;
+use specs::prelude::*;
+use std::collections::HashMap;
+
+pub struct DrunkardsWalkBuilder {
+    map : Map,
+    starting_position : Position,
+    depth: i32,
+    history: Vec<Map>,
+    noise_areas : HashMap<i32, Vec<usize>>
+}
+
+impl MapBuilder for DrunkardsWalkBuilder {
+    fn get_map(&self) -> Map {
+        self.map.clone()
+    }
+
+    fn get_starting_position(&self) -> Position {
+        self.starting_position.clone()
+    }
+
+    fn get_snapshot_history(&self) -> Vec<Map> {
+        self.history.clone()
+    }
+
+    fn build_map(&mut self)  {
+        self.build();
+    }
+
+    fn spawn_entities(&mut self, ecs : &mut World) {
+        for area in self.noise_areas.iter() {
+            spawner::spawn_region(ecs, area.1, self.depth);
+        }
+    }
+
+    fn take_snapshot(&mut self) {
+        if SHOW_MAPGEN_VISUALIZER {
+            let mut snapshot = self.map.clone();
+            for v in snapshot.revealed_tiles.iter_mut() {
+                *v = true;
+            }
+            self.history.push(snapshot);
+        }
+    }
+}
+
+impl DrunkardsWalkBuilder {
+    pub fn new(new_depth : i32) -> DrunkardsWalkBuilder {
+        DrunkardsWalkBuilder{
+            map : Map::new(new_depth),
+            starting_position : Position{ x: 0, y : 0 },
+            depth : new_depth,
+            history: Vec::new(),
+            noise_areas : HashMap::new()
+        }
+    }
+
+    #[allow(clippy::map_entry)]
+    fn build(&mut self) {
+        let mut rng = RandomNumberGenerator::new();
+
+        // Set a central starting point
+        self.starting_position = Position{ x: self.map.width / 2, y: self.map.height / 2 };
+        let start_idx = self.map.xy_idx(self.starting_position.x, self.starting_position.y);
+
+        // Find all tiles we can reach from the starting point
+        let map_starts : Vec<i32> = vec![start_idx as i32];
+        let dijkstra_map = rltk::DijkstraMap::new(self.map.width, self.map.height, &map_starts , &self.map, 200.0);
+        let mut exit_tile = (0, 0.0f32);
+        for (i, tile) in self.map.tiles.iter_mut().enumerate() {
+            if *tile == TileType::Floor {
+                let distance_to_start = dijkstra_map.map[i];
+                // We can't get to this tile - so we'll make it a wall
+                if distance_to_start == std::f32::MAX {
+                    *tile = TileType::Wall;
+                } else {
+                    // If it is further away than our current exit candidate, move the exit
+                    if distance_to_start > exit_tile.1 {
+                        exit_tile.0 = i;
+                        exit_tile.1 = distance_to_start;
+                    }
+                }
+            }
+        }
+        self.take_snapshot();
+
+        // Place the stairs
+        self.map.tiles[exit_tile.0] = TileType::DownStairs;
+        self.take_snapshot();
+
+        // Now we build a noise map for use in spawning entities later
+        let mut noise = rltk::FastNoise::seeded(rng.roll_dice(1, 65536) as u64);
+        noise.set_noise_type(rltk::NoiseType::Cellular);
+        noise.set_frequency(0.08);
+        noise.set_cellular_distance_function(rltk::CellularDistanceFunction::Manhattan);
+
+        for y in 1 .. self.map.height-1 {
+            for x in 1 .. self.map.width-1 {
+                let idx = self.map.xy_idx(x, y);
+                if self.map.tiles[idx] == TileType::Floor {
+                    let cell_value_f = noise.get_noise(x as f32, y as f32) * 10240.0;
+                    let cell_value = cell_value_f as i32;
+
+                    if self.noise_areas.contains_key(&cell_value) {
+                        self.noise_areas.get_mut(&cell_value).unwrap().push(idx);
+                    } else {
+                        self.noise_areas.insert(cell_value, vec![idx]);
+                    }
+                }
+            }
+        }
+    }
+}
+
+```
+
+We've kept a lot of the work from the Cellular Automata chapter, since it can help us here also. We also go into `map_builders/mod.rs` and once again force the "random" system to pick our new code:
+
+```rust
+pub fn random_builder(new_depth: i32) -> Box<dyn MapBuilder> {
+    /*let mut rng = rltk::RandomNumberGenerator::new();
+    let builder = rng.roll_dice(1, 4);
+    match builder {
+        1 => Box::new(BspDungeonBuilder::new(new_depth)),
+        2 => Box::new(BspInteriorBuilder::new(new_depth)),
+        3 => Box::new(CellularAutomotaBuilder::new(new_depth)),
+        _ => Box::new(SimpleMapBuilder::new(new_depth))
+    }*/
+    Box::new(DrunkardsWalkBuilder::new(new_depth))
+}
+```
+
+## Don't Repeat Yourself (The DRY principle)
+
+Since we're re-using the exact code from Cellular Automata, we should take the common code and put it into `map_builders/common.rs`. This saves typing, saves the compiler from repeatedly remaking the same code (increasing your program size). So in `common.rs`, we refactor the common code into some functions. In `common.rs`, we create a new function - `remove_unreachable_areas_returning_most_distant`:
+
+```rust
+/// Searches a map, removes unreachable areas and returns the most distant tile.
+pub fn remove_unreachable_areas_returning_most_distant(map : &mut Map, start_idx : usize) -> usize {
+    let map_starts : Vec<i32> = vec![start_idx as i32];
+    let dijkstra_map = rltk::DijkstraMap::new(map.width, map.height, &map_starts , map, 200.0);
+    let mut exit_tile = (0, 0.0f32);
+    for (i, tile) in map.tiles.iter_mut().enumerate() {
+        if *tile == TileType::Floor {
+            let distance_to_start = dijkstra_map.map[i];
+            // We can't get to this tile - so we'll make it a wall
+            if distance_to_start == std::f32::MAX {
+                *tile = TileType::Wall;
+            } else {
+                // If it is further away than our current exit candidate, move the exit
+                if distance_to_start > exit_tile.1 {
+                    exit_tile.0 = i;
+                    exit_tile.1 = distance_to_start;
+                }
+            }
+        }
+    }
+
+    exit_tile.0
+}
+```
+
+We'll make a second function, `generate_voronoi_spawn_regions`:
+
+```rust
+/// Generates a Voronoi/cellular noise map of a region, and divides it into spawn regions.
+#[allow(clippy::map_entry)]
+pub fn generate_voronoi_spawn_regions(map: &Map, rng : &mut rltk::RandomNumberGenerator) -> HashMap<i32, Vec<usize>> {
+    let mut noise_areas : HashMap<i32, Vec<usize>> = HashMap::new();
+    let mut noise = rltk::FastNoise::seeded(rng.roll_dice(1, 65536) as u64);
+    noise.set_noise_type(rltk::NoiseType::Cellular);
+    noise.set_frequency(0.08);
+    noise.set_cellular_distance_function(rltk::CellularDistanceFunction::Manhattan);
+
+    for y in 1 .. map.height-1 {
+        for x in 1 .. map.width-1 {
+            let idx = map.xy_idx(x, y);
+            if map.tiles[idx] == TileType::Floor {
+                let cell_value_f = noise.get_noise(x as f32, y as f32) * 10240.0;
+                let cell_value = cell_value_f as i32;
+
+                if noise_areas.contains_key(&cell_value) {
+                    noise_areas.get_mut(&cell_value).unwrap().push(idx);
+                } else {
+                    noise_areas.insert(cell_value, vec![idx]);
+                }
+            }
+        }
+    }
+
+    noise_areas
+}
+```
+
+Plugging these into our `build` function lets us reduce the boilerplate section considerably:
+
+```rust
+// Find all tiles we can reach from the starting point
+let exit_tile = remove_unreachable_areas_returning_most_distant(&mut self.map, start_idx);
+self.take_snapshot();
+
+// Place the stairs
+self.map.tiles[exit_tile] = TileType::DownStairs;
+self.take_snapshot();
+
+// Now we build a noise map for use in spawning entities later
+self.noise_areas = generate_voronoi_spawn_regions(&self.map, &mut rng);
+```
+
+In the example, I've gone back to the `cellular_automata` section and done the same.
+
+This is basically the same code we had before (hence, it isn't explained here), but wrapped in a function (and taking a mutable map reference - so it changes the map you give it, and the starting point as parameters).
+
+## Walking Drunkards
+
+The basic idea behind the algorithm is simple:
+
+1. Pick a central starting point, and convert it to a floor.
+2. We count how much of the map is floor space, and iterate until we have converted a percentage (we use 50% in the example) of the map to floors.
+    1. Spawn a drunkard at the starting point. The drunkard has a "lifetime" and a "position".
+    2. While the drunkard is still alive:
+        1. Decrement the drunkard's lifetime (I like to think that they pass out and sleep).
+        2. Roll a 4-sided dice.
+            1. If we rolled a 1, move the drunkard North.
+            2. If we rolled a 2, move the drunkard South.
+            3. If we rolled a 3, move the drunkard East.
+            4. If we rolled a 4, move the drunkard West.
+        3. The tile on which the drunkard landed becomes a floor.
+
+That's really all there is to it: we keep spawning drunkards until we have sufficient map coverage. Here's an implementation:
+
+```rust
+// Set a central starting point
+self.starting_position = Position{ x: self.map.width / 2, y: self.map.height / 2 };
+let start_idx = self.map.xy_idx(self.starting_position.x, self.starting_position.y);
+self.map.tiles[start_idx] = TileType::Floor;
+
+let total_tiles = self.map.width * self.map.height;
+let desired_floor_tiles = (total_tiles / 2) as usize;
+let mut floor_tile_count = self.map.tiles.iter().filter(|a| **a == TileType::Floor).count();
+let mut digger_count = 0;
+let mut active_digger_count = 0;
+
+while floor_tile_count  < desired_floor_tiles {
+    let mut did_something = false;
+    let mut drunk_x = self.starting_position.x;
+    let mut drunk_y = self.starting_position.y;
+    let mut drunk_life = 400;
+
+    while drunk_life > 0 {
+        let drunk_idx = self.map.xy_idx(drunk_x, drunk_y);
+        if self.map.tiles[drunk_idx] == TileType::Wall {
+            did_something = true;
+        }
+        self.map.tiles[drunk_idx] = TileType::DownStairs;
+
+        let stagger_direction = rng.roll_dice(1, 4);
+        match stagger_direction {
+            1 => { if drunk_x > 2 { drunk_x -= 1; } }
+            2 => { if drunk_x < self.map.width-2 { drunk_x += 1; } }
+            3 => { if drunk_y > 2 { drunk_y -=1; } }
+            _ => { if drunk_y < self.map.height-2 { drunk_y += 1; } }
+        }
+
+        drunk_life -= 1;
+    }
+    if did_something { 
+        self.take_snapshot(); 
+        active_digger_count += 1;
+    }
+
+    digger_count += 1;
+    for t in self.map.tiles.iter_mut() {
+        if *t == TileType::DownStairs {
+            *t = TileType::Floor;
+        }
+    }
+    floor_tile_count = self.map.tiles.iter().filter(|a| **a == TileType::Floor).count();
+}
+println!("{} dwarves gave up their sobriety, of whom {} actually found a wall.", digger_count, active_digger_count);
+```
+
+This implementation expands a lot of things out, and could be *much* shorter - but for clarity, we've left it large and obvious. We've also made a bunch of things into variables that could be constants - it's easier to read, and is designed to be easy to "play" with values. It also prints a status update to the console, showing what happened.
+
+If you `cargo run` now, you'll get a pretty nice open map:
+
+![Screenshot](./c27-s1.gif).
+
 
 
 **The source code for this chapter may be found [here](https://github.com/thebracket/rustrogueliketutorial/tree/master/chapter-28-drunkards-walk)**

+ 3 - 39
chapter-28-drunkards-walk/src/map_builders/cellular_automota.rs

@@ -112,50 +112,14 @@ impl CellularAutomotaBuilder {
         self.take_snapshot();
 
         // Find all tiles we can reach from the starting point
-        let map_starts : Vec<i32> = vec![start_idx as i32];
-        let dijkstra_map = rltk::DijkstraMap::new(self.map.width, self.map.height, &map_starts , &self.map, 200.0);
-        let mut exit_tile = (0, 0.0f32);
-        for (i, tile) in self.map.tiles.iter_mut().enumerate() {
-            if *tile == TileType::Floor {
-                let distance_to_start = dijkstra_map.map[i];
-                // We can't get to this tile - so we'll make it a wall
-                if distance_to_start == std::f32::MAX {
-                    *tile = TileType::Wall;
-                } else {
-                    // If it is further away than our current exit candidate, move the exit
-                    if distance_to_start > exit_tile.1 {
-                        exit_tile.0 = i;
-                        exit_tile.1 = distance_to_start;
-                    }
-                }
-            }
-        }
+        let exit_tile = remove_unreachable_areas_returning_most_distant(&mut self.map, start_idx);
         self.take_snapshot();
 
         // Place the stairs
-        self.map.tiles[exit_tile.0] = TileType::DownStairs;
+        self.map.tiles[exit_tile] = TileType::DownStairs;
         self.take_snapshot();
 
         // Now we build a noise map for use in spawning entities later
-        let mut noise = rltk::FastNoise::seeded(rng.roll_dice(1, 65536) as u64);
-        noise.set_noise_type(rltk::NoiseType::Cellular);
-        noise.set_frequency(0.08);
-        noise.set_cellular_distance_function(rltk::CellularDistanceFunction::Manhattan);
-
-        for y in 1 .. self.map.height-1 {
-            for x in 1 .. self.map.width-1 {
-                let idx = self.map.xy_idx(x, y);
-                if self.map.tiles[idx] == TileType::Floor {
-                    let cell_value_f = noise.get_noise(x as f32, y as f32) * 10240.0;
-                    let cell_value = cell_value_f as i32;
-
-                    if self.noise_areas.contains_key(&cell_value) {
-                        self.noise_areas.get_mut(&cell_value).unwrap().push(idx);
-                    } else {
-                        self.noise_areas.insert(cell_value, vec![idx]);
-                    }
-                }
-            }
-        }
+        self.noise_areas = generate_voronoi_spawn_regions(&self.map, &mut rng);
     }
 }

+ 53 - 0
chapter-28-drunkards-walk/src/map_builders/common.rs

@@ -1,5 +1,6 @@
 use super::{Map, Rect, TileType};
 use std::cmp::{max, min};
+use std::collections::HashMap;
 
 pub fn apply_room_to_map(map : &mut Map, room : &Rect) {
     for y in room.y1 +1 ..= room.y2 {
@@ -28,4 +29,56 @@ pub fn apply_vertical_tunnel(map : &mut Map, y1:i32, y2:i32, x:i32) {
             map.tiles[idx as usize] = TileType::Floor;
         }
     }
+}
+
+/// Searches a map, removes unreachable areas and returns the most distant tile.
+pub fn remove_unreachable_areas_returning_most_distant(map : &mut Map, start_idx : usize) -> usize {
+    let map_starts : Vec<i32> = vec![start_idx as i32];
+    let dijkstra_map = rltk::DijkstraMap::new(map.width, map.height, &map_starts , map, 200.0);
+    let mut exit_tile = (0, 0.0f32);
+    for (i, tile) in map.tiles.iter_mut().enumerate() {
+        if *tile == TileType::Floor {
+            let distance_to_start = dijkstra_map.map[i];
+            // We can't get to this tile - so we'll make it a wall
+            if distance_to_start == std::f32::MAX {
+                *tile = TileType::Wall;
+            } else {
+                // If it is further away than our current exit candidate, move the exit
+                if distance_to_start > exit_tile.1 {
+                    exit_tile.0 = i;
+                    exit_tile.1 = distance_to_start;
+                }
+            }
+        }
+    }
+
+    exit_tile.0
+}
+
+/// Generates a Voronoi/cellular noise map of a region, and divides it into spawn regions.
+#[allow(clippy::map_entry)]
+pub fn generate_voronoi_spawn_regions(map: &Map, rng : &mut rltk::RandomNumberGenerator) -> HashMap<i32, Vec<usize>> {
+    let mut noise_areas : HashMap<i32, Vec<usize>> = HashMap::new();
+    let mut noise = rltk::FastNoise::seeded(rng.roll_dice(1, 65536) as u64);
+    noise.set_noise_type(rltk::NoiseType::Cellular);
+    noise.set_frequency(0.08);
+    noise.set_cellular_distance_function(rltk::CellularDistanceFunction::Manhattan);
+
+    for y in 1 .. map.height-1 {
+        for x in 1 .. map.width-1 {
+            let idx = map.xy_idx(x, y);
+            if map.tiles[idx] == TileType::Floor {
+                let cell_value_f = noise.get_noise(x as f32, y as f32) * 10240.0;
+                let cell_value = cell_value_f as i32;
+
+                if noise_areas.contains_key(&cell_value) {
+                    noise_areas.get_mut(&cell_value).unwrap().push(idx);
+                } else {
+                    noise_areas.insert(cell_value, vec![idx]);
+                }
+            }
+        }
+    }
+
+    noise_areas
 }

+ 10 - 46
chapter-28-drunkards-walk/src/map_builders/drunkard.rs

@@ -1,5 +1,6 @@
 use super::{MapBuilder, Map,  
-    TileType, Position, spawner, SHOW_MAPGEN_VISUALIZER};
+    TileType, Position, spawner, SHOW_MAPGEN_VISUALIZER, 
+    remove_unreachable_areas_returning_most_distant, generate_voronoi_spawn_regions};
 use rltk::RandomNumberGenerator;
 use specs::prelude::*;
 use std::collections::HashMap;
@@ -56,8 +57,7 @@ impl DrunkardsWalkBuilder {
             noise_areas : HashMap::new()
         }
     }
-
-    #[allow(clippy::map_entry)]
+    
     fn build(&mut self) {
         let mut rng = RandomNumberGenerator::new();
 
@@ -86,10 +86,10 @@ impl DrunkardsWalkBuilder {
 
                 let stagger_direction = rng.roll_dice(1, 4);
                 match stagger_direction {
-                    1 => { if drunk_x > 1 { drunk_x -= 1; } }
-                    2 => { if drunk_x < self.map.width-1 { drunk_x += 1; } }
-                    3 => { if drunk_y > 1 { drunk_y -=1; } }
-                    _ => { if drunk_y < self.map.height-1 { drunk_y += 1; } }
+                    1 => { if drunk_x > 2 { drunk_x -= 1; } }
+                    2 => { if drunk_x < self.map.width-2 { drunk_x += 1; } }
+                    3 => { if drunk_y > 2 { drunk_y -=1; } }
+                    _ => { if drunk_y < self.map.height-2 { drunk_y += 1; } }
                 }
 
                 drunk_life -= 1;
@@ -110,50 +110,14 @@ impl DrunkardsWalkBuilder {
         println!("{} dwarves gave up their sobriety, of whom {} actually found a wall.", digger_count, active_digger_count);
 
         // Find all tiles we can reach from the starting point
-        let map_starts : Vec<i32> = vec![start_idx as i32];
-        let dijkstra_map = rltk::DijkstraMap::new(self.map.width, self.map.height, &map_starts , &self.map, 200.0);
-        let mut exit_tile = (0, 0.0f32);
-        for (i, tile) in self.map.tiles.iter_mut().enumerate() {
-            if *tile == TileType::Floor {
-                let distance_to_start = dijkstra_map.map[i];
-                // We can't get to this tile - so we'll make it a wall
-                if distance_to_start == std::f32::MAX {
-                    *tile = TileType::Wall;
-                } else {
-                    // If it is further away than our current exit candidate, move the exit
-                    if distance_to_start > exit_tile.1 {
-                        exit_tile.0 = i;
-                        exit_tile.1 = distance_to_start;
-                    }
-                }
-            }
-        }
+        let exit_tile = remove_unreachable_areas_returning_most_distant(&mut self.map, start_idx);
         self.take_snapshot();
 
         // Place the stairs
-        self.map.tiles[exit_tile.0] = TileType::DownStairs;
+        self.map.tiles[exit_tile] = TileType::DownStairs;
         self.take_snapshot();
 
         // Now we build a noise map for use in spawning entities later
-        let mut noise = rltk::FastNoise::seeded(rng.roll_dice(1, 65536) as u64);
-        noise.set_noise_type(rltk::NoiseType::Cellular);
-        noise.set_frequency(0.08);
-        noise.set_cellular_distance_function(rltk::CellularDistanceFunction::Manhattan);
-
-        for y in 1 .. self.map.height-1 {
-            for x in 1 .. self.map.width-1 {
-                let idx = self.map.xy_idx(x, y);
-                if self.map.tiles[idx] == TileType::Floor {
-                    let cell_value_f = noise.get_noise(x as f32, y as f32) * 10240.0;
-                    let cell_value = cell_value_f as i32;
-
-                    if self.noise_areas.contains_key(&cell_value) {
-                        self.noise_areas.get_mut(&cell_value).unwrap().push(idx);
-                    } else {
-                        self.noise_areas.insert(cell_value, vec![idx]);
-                    }
-                }
-            }
-        }
+        self.noise_areas = generate_voronoi_spawn_regions(&self.map, &mut rng);
     }
 }