maze.rs 7.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257
  1. use super::{MapBuilder, Map,
  2. TileType, Position, spawner, SHOW_MAPGEN_VISUALIZER,
  3. remove_unreachable_areas_returning_most_distant, generate_voronoi_spawn_regions};
  4. use rltk::RandomNumberGenerator;
  5. use specs::prelude::*;
  6. use std::collections::HashMap;
  7. pub struct MazeBuilder {
  8. map : Map,
  9. starting_position : Position,
  10. depth: i32,
  11. history: Vec<Map>,
  12. noise_areas : HashMap<i32, Vec<usize>>
  13. }
  14. impl MapBuilder for MazeBuilder {
  15. fn get_map(&self) -> Map {
  16. self.map.clone()
  17. }
  18. fn get_starting_position(&self) -> Position {
  19. self.starting_position.clone()
  20. }
  21. fn get_snapshot_history(&self) -> Vec<Map> {
  22. self.history.clone()
  23. }
  24. fn build_map(&mut self) {
  25. self.build();
  26. }
  27. fn spawn_entities(&mut self, ecs : &mut World) {
  28. for area in self.noise_areas.iter() {
  29. spawner::spawn_region(ecs, area.1, self.depth);
  30. }
  31. }
  32. fn take_snapshot(&mut self) {
  33. if SHOW_MAPGEN_VISUALIZER {
  34. let mut snapshot = self.map.clone();
  35. for v in snapshot.revealed_tiles.iter_mut() {
  36. *v = true;
  37. }
  38. self.history.push(snapshot);
  39. }
  40. }
  41. }
  42. impl MazeBuilder {
  43. pub fn new(new_depth : i32) -> MazeBuilder {
  44. MazeBuilder{
  45. map : Map::new(new_depth),
  46. starting_position : Position{ x: 0, y : 0 },
  47. depth : new_depth,
  48. history: Vec::new(),
  49. noise_areas : HashMap::new()
  50. }
  51. }
  52. #[allow(clippy::map_entry)]
  53. fn build(&mut self) {
  54. let mut rng = RandomNumberGenerator::new();
  55. // Maze gen
  56. let mut maze = Grid::new((self.map.width / 2)-2, (self.map.height / 2)-2, &mut rng);
  57. maze.generate_maze(self);
  58. // Find a starting point; start at the middle and walk left until we find an open tile
  59. self.starting_position = Position{ x: 2, y : 2 };
  60. let start_idx = self.map.xy_idx(self.starting_position.x, self.starting_position.y);
  61. self.take_snapshot();
  62. // Find all tiles we can reach from the starting point
  63. let exit_tile = remove_unreachable_areas_returning_most_distant(&mut self.map, start_idx);
  64. self.take_snapshot();
  65. // Place the stairs
  66. self.map.tiles[exit_tile] = TileType::DownStairs;
  67. self.take_snapshot();
  68. // Now we build a noise map for use in spawning entities later
  69. self.noise_areas = generate_voronoi_spawn_regions(&self.map, &mut rng);
  70. }
  71. }
  72. /* Maze code taken under MIT from https://github.com/cyucelen/mazeGenerator/ */
  73. const TOP : usize = 0;
  74. const RIGHT : usize = 1;
  75. const BOTTOM : usize = 2;
  76. const LEFT : usize = 3;
  77. #[derive(Copy, Clone)]
  78. struct Cell {
  79. row: i32,
  80. column: i32,
  81. walls: [bool; 4],
  82. visited: bool,
  83. }
  84. impl Cell {
  85. fn new(row: i32, column: i32) -> Cell {
  86. Cell{
  87. row,
  88. column,
  89. walls: [true, true, true, true],
  90. visited: false
  91. }
  92. }
  93. unsafe fn remove_walls(&mut self, next : *mut Cell) {
  94. let x = self.column - (*(next)).column;
  95. let y = self.row - (*(next)).row;
  96. if x == 1 {
  97. self.walls[LEFT] = false;
  98. (*(next)).walls[RIGHT] = false;
  99. }
  100. else if x == -1 {
  101. self.walls[RIGHT] = false;
  102. (*(next)).walls[LEFT] = false;
  103. }
  104. else if y == 1 {
  105. self.walls[TOP] = false;
  106. (*(next)).walls[BOTTOM] = false;
  107. }
  108. else if y == -1 {
  109. self.walls[BOTTOM] = false;
  110. (*(next)).walls[TOP] = false;
  111. }
  112. }
  113. }
  114. struct Grid<'a> {
  115. width: i32,
  116. height: i32,
  117. cells: Vec<Cell>,
  118. backtrace: Vec<usize>,
  119. current: usize,
  120. rng : &'a mut RandomNumberGenerator
  121. }
  122. impl<'a> Grid<'a> {
  123. fn new(width: i32, height:i32, rng: &mut RandomNumberGenerator) -> Grid {
  124. let mut grid = Grid{
  125. width,
  126. height,
  127. cells: Vec::new(),
  128. backtrace: Vec::new(),
  129. current: 0,
  130. rng
  131. };
  132. for row in 0..height {
  133. for column in 0..width {
  134. grid.cells.push(Cell::new(row, column));
  135. }
  136. }
  137. grid
  138. }
  139. fn calculate_index(&self, row: i32, column: i32) -> i32 {
  140. if row < 0 || column < 0 || column > self.width-1 || row > self.height-1 {
  141. -1
  142. } else {
  143. column + (row * self.width)
  144. }
  145. }
  146. fn get_available_neighbors(&self) -> Vec<usize> {
  147. let mut neighbors : Vec<usize> = Vec::new();
  148. let current_row = self.cells[self.current].row;
  149. let current_column = self.cells[self.current].column;
  150. let neighbor_indices : [i32; 4] = [
  151. self.calculate_index(current_row -1, current_column),
  152. self.calculate_index(current_row, current_column + 1),
  153. self.calculate_index(current_row + 1, current_column),
  154. self.calculate_index(current_row, current_column - 1)
  155. ];
  156. for i in neighbor_indices.iter() {
  157. if *i != -1 && !self.cells[*i as usize].visited {
  158. neighbors.push(*i as usize);
  159. }
  160. }
  161. neighbors
  162. }
  163. fn find_next_cell(&mut self) -> Option<usize> {
  164. let neighbors = self.get_available_neighbors();
  165. if !neighbors.is_empty() {
  166. if neighbors.len() == 1 {
  167. return Some(neighbors[0]);
  168. } else {
  169. return Some(neighbors[(self.rng.roll_dice(1, neighbors.len() as i32)-1) as usize]);
  170. }
  171. }
  172. None
  173. }
  174. fn generate_maze(&mut self, generator : &mut MazeBuilder) {
  175. let mut i = 0;
  176. loop {
  177. self.cells[self.current].visited = true;
  178. let next = self.find_next_cell();
  179. match next {
  180. Some(next) => {
  181. self.cells[next].visited = true;
  182. self.backtrace.insert(0, self.current);
  183. unsafe {
  184. let next_cell : *mut Cell = &mut self.cells[next];
  185. let current_cell = &mut self.cells[self.current];
  186. current_cell.remove_walls(next_cell);
  187. }
  188. self.current = next;
  189. }
  190. None => {
  191. if !self.backtrace.is_empty() {
  192. self.current = self.backtrace[0];
  193. self.backtrace.remove(0);
  194. } else {
  195. break;
  196. }
  197. }
  198. }
  199. if i % 50 == 0 {
  200. self.copy_to_map(&mut generator.map);
  201. generator.take_snapshot();
  202. }
  203. i += 1;
  204. }
  205. }
  206. fn copy_to_map(&self, map : &mut Map) {
  207. // Clear the map
  208. for i in map.tiles.iter_mut() { *i = TileType::Wall; }
  209. for cell in self.cells.iter() {
  210. let x = cell.column + 1;
  211. let y = cell.row + 1;
  212. let idx = map.xy_idx(x * 2, y * 2);
  213. map.tiles[idx] = TileType::Floor;
  214. if !cell.walls[TOP] { map.tiles[idx - map.width as usize] = TileType::Floor }
  215. if !cell.walls[RIGHT] { map.tiles[idx + 1] = TileType::Floor }
  216. if !cell.walls[BOTTOM] { map.tiles[idx + map.width as usize] = TileType::Floor }
  217. if !cell.walls[LEFT] { map.tiles[idx - 1] = TileType::Floor }
  218. }
  219. }
  220. }