use std::cmp::{max, min}; use crate::rect::Rect; use specs::prelude::*; use rltk::{Algorithm2D, BaseMap, Console, Point, RandomNumberGenerator, Rltk, RGB}; const MAPWIDTH: usize = 80; const MAPHEIGHT: usize = 43; const MAPCOUNT: usize = MAPHEIGHT * MAPWIDTH; #[derive(PartialEq, Copy, Clone)] pub enum TileType { Wall, Floor, } #[derive(Default)] pub struct Map { pub tiles: Vec, pub rooms: Vec, pub width: i32, pub height: i32, pub revealed_tiles: Vec, pub visible_tiles: Vec, pub blocked: Vec, pub tile_content: Vec>, } impl Map { pub fn xy_idx(&self, x: i32, y: i32) -> usize { (y as usize * self.width as usize) + x as usize } fn apply_room_to_map(&mut self, room: &Rect) { for y in room.y1 + 1..=room.y2 { for x in room.x1 + 1..=room.x2 { let idx = self.xy_idx(x, y); self.tiles[idx] = TileType::Floor; } } } fn apply_horizontal_tunnel(&mut self, x1: i32, x2: i32, y: i32) { for x in min(x1, x2)..=max(x1, x2) { let idx = self.xy_idx(x, y); if idx > 0 && idx < self.width as usize * self.height as usize { self.tiles[idx as usize] = TileType::Floor; } } } fn apply_vertical_tunnel(&mut self, y1: i32, y2: i32, x: i32) { for y in min(y1, y2)..=max(y1, y2) { let idx = self.xy_idx(x, y); if idx > 0 && idx < self.width as usize * self.height as usize { self.tiles[idx as usize] = TileType::Floor; } } } fn is_exit_valid(&self, x: i32, y: i32) -> bool { if x < 1 || x > self.width - 1 || y < 1 || y > self.height - 1 { return false; } let idx = (y * self.width) + x; !self.blocked[idx as usize] } pub fn populate_blocked(&mut self) { for (i, tile) in self.tiles.iter_mut().enumerate() { self.blocked[i] = *tile == TileType::Wall; } } pub fn clear_content_index(&mut self) { for content in self.tile_content.iter_mut() { content.clear(); } } /// Makes a new map using the algorithm from http://rogueliketutorials.com/tutorials/tcod/part-3/ /// This gives a handful of random rooms and corridors joining them together. pub fn new_map_rooms_and_corridors() -> Map { let mut map = Map { tiles: vec![TileType::Wall; MAPCOUNT], rooms: Vec::new(), width: MAPWIDTH as i32, height: MAPHEIGHT as i32, revealed_tiles: vec![false; MAPCOUNT], visible_tiles: vec![false; MAPCOUNT], blocked: vec![false; MAPCOUNT], tile_content: vec![Vec::new(); MAPCOUNT], }; const MAX_ROOMS: i32 = 30; const MIN_SIZE: i32 = 6; const MAX_SIZE: i32 = 10; let mut rng = RandomNumberGenerator::new(); for _i in 0..MAX_ROOMS { let w = rng.range(MIN_SIZE, MAX_SIZE); let h = rng.range(MIN_SIZE, MAX_SIZE); let x = rng.roll_dice(1, map.width - w - 1) - 1; let y = rng.roll_dice(1, map.height - h - 1) - 1; let new_room = Rect::new(x, y, w, h); let mut ok = true; for other_room in map.rooms.iter() { if new_room.intersect(other_room) { ok = false } } if ok { map.apply_room_to_map(&new_room); if !map.rooms.is_empty() { let (new_x, new_y) = new_room.center(); let (prev_x, prev_y) = map.rooms[map.rooms.len() - 1].center(); if rng.range(0, 1) == 1 { map.apply_horizontal_tunnel(prev_x, new_x, prev_y); map.apply_vertical_tunnel(prev_y, new_y, new_x); } else { map.apply_vertical_tunnel(prev_y, new_y, prev_x); map.apply_horizontal_tunnel(prev_x, new_x, new_y); } } map.rooms.push(new_room); } } map } pub fn get_attackable<'a>( &self, target: usize, stats: &ReadStorage<'a, crate::components::CombatStats>, ) -> Option { for potential in self.tile_content[target].iter() { if stats.contains(*potential) { return Some(*potential) } } None } } impl BaseMap for Map { fn is_opaque(&self, idx: i32) -> bool { self.tiles[idx as usize] == TileType::Wall } fn get_available_exits(&self, idx: i32) -> Vec<(i32, f32)> { let mut exits: Vec<(i32, f32)> = Vec::new(); let x = idx % self.width; let y = idx / self.width; // Cardinal directions if self.is_exit_valid(x - 1, y) { exits.push((idx - 1, 1.0)) }; if self.is_exit_valid(x + 1, y) { exits.push((idx + 1, 1.0)) }; if self.is_exit_valid(x, y - 1) { exits.push((idx - self.width, 1.0)) }; if self.is_exit_valid(x, y + 1) { exits.push((idx + self.width, 1.0)) }; // Diagonals if self.is_exit_valid(x - 1, y - 1) { exits.push(((idx - self.width) - 1, 1.45)); } if self.is_exit_valid(x + 1, y - 1) { exits.push(((idx - self.width) + 1, 1.45)); } if self.is_exit_valid(x - 1, y + 1) { exits.push(((idx + self.width) - 1, 1.45)); } if self.is_exit_valid(x + 1, y + 1) { exits.push(((idx + self.width) + 1, 1.45)); } exits } fn get_pathing_distance(&self, idx1: i32, idx2: i32) -> f32 { let p1 = Point::new(idx1 % self.width, idx1 / self.width); let p2 = Point::new(idx2 % self.width, idx2 / self.width); rltk::DistanceAlg::Pythagoras.distance2d(p1, p2) } } impl Algorithm2D for Map { fn point2d_to_index(&self, pt: Point) -> i32 { (pt.y * self.width) + pt.x } fn index_to_point2d(&self, idx: i32) -> Point { Point { x: idx % self.width, y: idx / self.width, } } } pub fn draw_map(ecs: &World, ctx: &mut Rltk) { let map = ecs.fetch::(); let mut y = 0; let mut x = 0; for (idx, tile) in map.tiles.iter().enumerate() { // Render a tile depending upon the tile type if map.revealed_tiles[idx] { let glyph; let mut fg; match tile { TileType::Floor => { glyph = rltk::to_cp437('.'); fg = RGB::from_f32(0.0, 0.5, 0.5); } TileType::Wall => { glyph = rltk::to_cp437('#'); fg = RGB::from_f32(0., 1.0, 0.); } } if !map.visible_tiles[idx] { fg = fg.to_greyscale() } ctx.set(x, y, fg, RGB::from_f32(0., 0., 0.), glyph); } // Move the coordinates x += 1; if x > MAPWIDTH as i32 - 1 { x = 0; y += 1; } } }