use super::{Map, Rect, TileType}; use std::cmp::{max, min}; use std::collections::HashMap; #[derive(PartialEq, Copy, Clone)] pub enum Symmetry { None, Horizontal, Vertical, Both } pub fn apply_room_to_map(map : &mut Map, room : &Rect) { for y in room.y1 +1 ..= room.y2 { for x in room.x1 + 1 ..= room.x2 { let idx = map.xy_idx(x, y); if idx > 0 && idx < ((map.width * map.height)-1) as usize { map.tiles[idx] = TileType::Floor; } } } } pub fn apply_horizontal_tunnel(map : &mut Map, x1:i32, x2:i32, y:i32) { for x in min(x1,x2) ..= max(x1,x2) { let idx = map.xy_idx(x, y); if idx > 0 && idx < map.width as usize * map.height as usize { map.tiles[idx as usize] = TileType::Floor; } } } pub fn apply_vertical_tunnel(map : &mut Map, y1:i32, y2:i32, x:i32) { for y in min(y1,y2) ..= max(y1,y2) { let idx = map.xy_idx(x, y); if idx > 0 && idx < map.width as usize * map.height as usize { map.tiles[idx as usize] = TileType::Floor; } } } /// Searches a map, removes unreachable areas and returns the most distant tile. pub fn remove_unreachable_areas_returning_most_distant(map : &mut Map, start_idx : usize) -> usize { map.populate_blocked(); let map_starts : Vec = vec![start_idx as i32]; let dijkstra_map = rltk::DijkstraMap::new(map.width, map.height, &map_starts , map, 400.0); let mut exit_tile = (0, 0.0f32); for (i, tile) in map.tiles.iter_mut().enumerate() { if *tile == TileType::Floor { let distance_to_start = dijkstra_map.map[i]; // We can't get to this tile - so we'll make it a wall if distance_to_start == std::f32::MAX { *tile = TileType::Wall; } else { // If it is further away than our current exit candidate, move the exit if distance_to_start > exit_tile.1 { exit_tile.0 = i; exit_tile.1 = distance_to_start; } } } } exit_tile.0 } /// Generates a Voronoi/cellular noise map of a region, and divides it into spawn regions. #[allow(clippy::map_entry)] pub fn generate_voronoi_spawn_regions(map: &Map, rng : &mut rltk::RandomNumberGenerator) -> HashMap> { let mut noise_areas : HashMap> = HashMap::new(); let mut noise = rltk::FastNoise::seeded(rng.roll_dice(1, 65536) as u64); noise.set_noise_type(rltk::NoiseType::Cellular); noise.set_frequency(0.08); noise.set_cellular_distance_function(rltk::CellularDistanceFunction::Manhattan); for y in 1 .. map.height-1 { for x in 1 .. map.width-1 { let idx = map.xy_idx(x, y); if map.tiles[idx] == TileType::Floor { let cell_value_f = noise.get_noise(x as f32, y as f32) * 10240.0; let cell_value = cell_value_f as i32; if noise_areas.contains_key(&cell_value) { noise_areas.get_mut(&cell_value).unwrap().push(idx); } else { noise_areas.insert(cell_value, vec![idx]); } } } } noise_areas } pub fn draw_corridor(map: &mut Map, x1:i32, y1:i32, x2:i32, y2:i32) { let mut x = x1; let mut y = y1; while x != x2 || y != y2 { if x < x2 { x += 1; } else if x > x2 { x -= 1; } else if y < y2 { y += 1; } else if y > y2 { y -= 1; } let idx = map.xy_idx(x, y); map.tiles[idx] = TileType::Floor; } } pub fn paint(map: &mut Map, mode: Symmetry, brush_size: i32, x: i32, y:i32) { match mode { Symmetry::None => apply_paint(map, brush_size, x, y), Symmetry::Horizontal => { let center_x = map.width / 2; if x == center_x { apply_paint(map, brush_size, x, y); } else { let dist_x = i32::abs(center_x - x); apply_paint(map, brush_size, center_x + dist_x, y); apply_paint(map, brush_size, center_x - dist_x, y); } } Symmetry::Vertical => { let center_y = map.height / 2; if y == center_y { apply_paint(map, brush_size, x, y); } else { let dist_y = i32::abs(center_y - y); apply_paint(map, brush_size, x, center_y + dist_y); apply_paint(map, brush_size, x, center_y - dist_y); } } Symmetry::Both => { let center_x = map.width / 2; let center_y = map.height / 2; if x == center_x && y == center_y { apply_paint(map, brush_size, x, y); } else { let dist_x = i32::abs(center_x - x); apply_paint(map, brush_size, center_x + dist_x, y); apply_paint(map, brush_size, center_x - dist_x, y); let dist_y = i32::abs(center_y - y); apply_paint(map, brush_size, x, center_y + dist_y); apply_paint(map, brush_size, x, center_y - dist_y); } } } } fn apply_paint(map: &mut Map, brush_size: i32, x: i32, y: i32) { match brush_size { 1 => { let digger_idx = map.xy_idx(x, y); map.tiles[digger_idx] = TileType::Floor; } _ => { let half_brush_size = brush_size / 2; for brush_y in y-half_brush_size .. y+half_brush_size { for brush_x in x-half_brush_size .. x+half_brush_size { if brush_x > 1 && brush_x < map.width-1 && brush_y > 1 && brush_y < map.height-1 { let idx = map.xy_idx(brush_x, brush_y); map.tiles[idx] = TileType::Floor; } } } } } }