interp.rs 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747
  1. use crate::ast::*;
  2. use anyhow::{Error,anyhow,bail};
  3. use rand::Rng;
  4. use std::cell::RefCell;
  5. use std::collections::HashMap;
  6. use std::fmt;
  7. use std::io;
  8. use std::rc::Rc;
  9. /// A `Value` is a representation of the resut of evaluation. Note
  10. /// that a `Value` is a representation of something in _weak head
  11. /// normal form_: i.e. for compound expressions (right now just
  12. /// tuples) it might contain other values but it might contain
  13. /// unevaluated expressions as well.
  14. #[derive(Debug, Clone)]
  15. pub enum Value {
  16. Lit(Literal),
  17. Tup(Vec<Thunk>),
  18. Builtin(&'static BuiltinFunc),
  19. Closure(Closure),
  20. Nil,
  21. }
  22. impl fmt::Display for Value {
  23. fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
  24. self.with_str(|s| write!(f, "{}", s))
  25. }
  26. }
  27. impl Value {
  28. /// Convert this value to a Rust integer, failing otherwise
  29. fn as_num(&self) -> Result<i64, Error> {
  30. match self {
  31. Value::Lit(Literal::Num(n)) => Ok(*n),
  32. _ => self.with_str(|s| bail!("Expected number, got {}", s)),
  33. }
  34. }
  35. /// Convert this value to a Rust string, failing otherwise
  36. fn as_str(&self) -> Result<&str, Error> {
  37. match self {
  38. Value::Lit(Literal::Str(s)) => Ok(s),
  39. _ => self.with_str(|s| bail!("Expected string, got {}", s)),
  40. }
  41. }
  42. /// Convert this value to a Rust slice, failing otherwise
  43. fn as_tup(&self) -> Result<&[Thunk], Error> {
  44. match self {
  45. Value::Tup(vals) => Ok(vals),
  46. _ => self.with_str(|s| bail!("Expected tuple, got {}", s)),
  47. }
  48. }
  49. /// Convert this value to a closure, failing otherwise
  50. fn as_closure(&self) -> Result<&Closure, Error> {
  51. match self {
  52. Value::Closure(closure) => Ok(closure),
  53. _ => self.with_str(|s| bail!("Expected tuple, got {}", s)),
  54. }
  55. }
  56. /// Call the provided function with the string representation of
  57. /// this value. Note that this _will not force the value_ if it's
  58. /// not completely forced already: indeed, this can't, since it
  59. /// doesn't have access to the `State`. Unevaluated fragments of
  60. /// the value will be printed as `#<unevaluated>`.
  61. fn with_str<U>(&self, f: impl FnOnce(&str) -> U) -> U {
  62. match self {
  63. Value::Nil => f(""),
  64. Value::Lit(Literal::Str(s)) => f(s),
  65. Value::Lit(Literal::Atom(s)) => f(&format!("{:?}", s)),
  66. Value::Lit(Literal::Num(n)) => f(&format!("{}", n)),
  67. Value::Tup(values) => {
  68. let mut buf = String::new();
  69. buf.push('<');
  70. for (i, val) in values.iter().enumerate() {
  71. if i > 0 {
  72. buf.push_str(", ");
  73. }
  74. match val {
  75. Thunk::Value(v) => buf.push_str(&v.to_string()),
  76. Thunk::Expr(..) => buf.push_str("#<unevaluated>"),
  77. Thunk::Builtin(func) => buf.push_str(&format!("#<builtin {}>", func.name)),
  78. }
  79. }
  80. buf.push('>');
  81. f(&buf)
  82. }
  83. Value::Builtin(func) => f(&format!("#<builtin {}>", func.name)),
  84. Value::Closure(_) => f("#<lambda ...>"),
  85. }
  86. }
  87. }
  88. /// A representation of a builtin function implemented in Rust. This
  89. /// will be inserted into the global scope under the name provided as
  90. /// `name`.
  91. pub struct BuiltinFunc {
  92. /// The name of the builtin: this is used in error messages, in
  93. /// printing the value (e.g. in the case of `puts some-builtin`),
  94. /// and as the Matzo identifier used for this function.
  95. name: &'static str,
  96. /// The callback here is the Rust implementation of the function,
  97. /// where the provided `ExprRef` is the argument to the function.
  98. callback: &'static dyn Fn(&State, ExprRef, &Env) -> Result<Value, Error>,
  99. }
  100. impl fmt::Debug for BuiltinFunc {
  101. fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
  102. writeln!(fmt, "BuiltinFunc {{ name: {:?}, ... }}", self.name)
  103. }
  104. }
  105. /// The list of builtins provided at startup.
  106. ///
  107. /// TODO: move this to a separate file and clean it up
  108. const BUILTINS: &[BuiltinFunc] = &[
  109. BuiltinFunc {
  110. name: "rep",
  111. callback: &|state: &State, expr: ExprRef, env: &Env| -> Result<Value, Error> {
  112. let (rep, expr) = {
  113. let ast = state.ast.borrow();
  114. let args = match &ast[expr] {
  115. Expr::Tup(tup) => tup,
  116. _ => bail!("`rep`: expected tuple"),
  117. };
  118. if args.len() != 2 {
  119. bail!("`rep`: expected two arguments, got {}", args.len())
  120. }
  121. (args[0], args[1])
  122. };
  123. let mut buf = String::new();
  124. let num = state.eval(rep, env)?.as_num()?;
  125. for _ in 0..num {
  126. buf.push_str(&state.eval(expr, env)?.as_str()?.to_string());
  127. }
  128. Ok(Value::Lit(Literal::Str(buf)))
  129. },
  130. },
  131. BuiltinFunc {
  132. name: "length",
  133. callback: &|state: &State, expr: ExprRef, _env: &Env| -> Result<Value, Error> {
  134. let ast = state.ast.borrow();
  135. let args = match &ast[expr] {
  136. Expr::Tup(tup) => tup,
  137. _ => bail!("`length`: expected tuple"),
  138. };
  139. Ok(Value::Lit(Literal::Num(args.len() as i64)))
  140. },
  141. },
  142. BuiltinFunc {
  143. name: "to-upper",
  144. callback: &|state: &State, expr: ExprRef, env: &Env| -> Result<Value, Error> {
  145. let s = state.eval(expr, env)?;
  146. Ok(Value::Lit(Literal::Str(s.as_str()?.to_uppercase())))
  147. },
  148. },
  149. BuiltinFunc {
  150. name: "to-lower",
  151. callback: &|state: &State, expr: ExprRef, env: &Env| -> Result<Value, Error> {
  152. let s = state.eval(expr, env)?;
  153. Ok(Value::Lit(Literal::Str(s.as_str()?.to_lowercase())))
  154. },
  155. },
  156. BuiltinFunc {
  157. name: "concat",
  158. callback: &|state: &State, expr: ExprRef, env: &Env| -> Result<Value, Error> {
  159. let val = state.eval(expr, env)?;
  160. let tup = val.as_tup()?;
  161. let mut contents = Vec::new();
  162. for elem in tup {
  163. for th in state.hnf(elem)?.as_tup()? {
  164. contents.push(th.clone());
  165. }
  166. }
  167. Ok(Value::Tup(contents))
  168. },
  169. },
  170. BuiltinFunc {
  171. name: "tuple-fold",
  172. callback: &|state: &State, expr: ExprRef, env: &Env| -> Result<Value, Error> {
  173. let val = state.eval(expr, env)?;
  174. let args = val.as_tup()?;
  175. if args.len() != 3 {
  176. bail!("`tuple-fold`: expected 3 arguments, got {}", args.len());
  177. }
  178. let func = &args[0];
  179. let init = &args[1];
  180. let tup = &args[2];
  181. let func = state.hnf(func)?;
  182. let tup = state.hnf(tup)?;
  183. let mut result = init.clone();
  184. for t in tup.as_tup()? {
  185. let partial = state.eval_closure(func.as_closure()?, result)?;
  186. result = Thunk::Value(state.eval_closure(partial.as_closure()?, t.clone())?);
  187. }
  188. state.hnf(&result)
  189. },
  190. },
  191. ];
  192. /// The name `Thunk` is a bit of a misnomer here: this is
  193. /// _potentially_ a `Thunk`, but represents anything that can be
  194. /// stored in a variable: it might be an unevaluated expression (along
  195. /// with the environment where it should be evaluated), or it might be
  196. /// a partially- or fully-forced value, or it might be a builtin
  197. /// function.
  198. #[derive(Debug, Clone)]
  199. pub enum Thunk {
  200. Expr(ExprRef, Env),
  201. Value(Value),
  202. Builtin(&'static BuiltinFunc),
  203. }
  204. /// An environment is either `None` (i.e. in the root scope) or `Some`
  205. /// of some reference-counted scope (since those scopes might be
  206. /// shared in several places, e.g. as pointers in thunks or closures).
  207. type Env = Option<Rc<Scope>>;
  208. /// A `Scope` represents a _non-root_ scope (since the root scope is
  209. /// treated in a special way) and contains a map from variables to
  210. /// `Thunk`s, along with a parent pointer.
  211. #[derive(Debug)]
  212. pub struct Scope {
  213. vars: HashMap<Name, Thunk>,
  214. parent: Env,
  215. }
  216. /// A `Closure` is a pointer to the expression that represents a
  217. /// function implementation along with the scope in which it was
  218. /// defined.
  219. ///
  220. /// IMPORTANT INVARIANT: the `func` here should be an `ExprRef` which
  221. /// references a `Func`. The reason we don't copy the `Func` in is
  222. /// because, well, that'd be copying, and we can bypass that, but we
  223. /// have to maintain that invariant explicitly, otherwise we'll panic.
  224. #[derive(Debug, Clone)]
  225. pub struct Closure {
  226. func: ExprRef,
  227. scope: Env,
  228. }
  229. /// A `State` contains all the interpreter state needed to run a
  230. /// `Matzo` program.
  231. pub struct State {
  232. /// An `ASTArena` that contains all the packed information that
  233. /// results from parsing a program.
  234. ast: RefCell<ASTArena>,
  235. /// The root scope of the program, which contains all the
  236. /// top-level definitions and builtins.
  237. root_scope: RefCell<HashMap<Name, Thunk>>,
  238. /// The thread-local RNG.
  239. rand: RefCell<rand::rngs::ThreadRng>,
  240. /// The instantiated parser used to parse Matzo programs
  241. parser: crate::grammar::StmtsParser,
  242. }
  243. impl Default for State {
  244. fn default() -> State {
  245. Self::new()
  246. }
  247. }
  248. impl State {
  249. /// This initializes a new `State` and adds all the builtin
  250. /// functions to the root scope
  251. pub fn new() -> State {
  252. let s = State {
  253. root_scope: RefCell::new(HashMap::new()),
  254. rand: RefCell::new(rand::thread_rng()),
  255. parser: crate::grammar::StmtsParser::new(),
  256. ast: RefCell::new(ASTArena::new()),
  257. };
  258. for builtin in BUILTINS {
  259. let sym = s.ast.borrow_mut().add_string(builtin.name);
  260. s.root_scope
  261. .borrow_mut()
  262. .insert(sym, Thunk::Builtin(builtin));
  263. }
  264. s
  265. }
  266. /// Get the underlying AST. (This is mostly useful for testing
  267. /// purposes, where we don't want to have a function do the
  268. /// parsing and evaluating for us at the same time.)
  269. pub fn get_ast(&self) -> &RefCell<ASTArena> {
  270. &self.ast
  271. }
  272. /// Look up a `Name` in the provided `Env`. This will result in
  273. /// either a `Thunk` (i.e. the named value) or an error that
  274. /// indicates the missing name.
  275. fn lookup(&self, env: &Env, name: Name) -> Result<Thunk, Error> {
  276. if let Some(env) = env {
  277. if let Some(ne) = env.vars.get(&name) {
  278. Ok(ne.clone())
  279. } else {
  280. self.lookup(&env.parent, name)
  281. }
  282. } else {
  283. match self.root_scope.borrow().get(&name) {
  284. None => bail!("no such thing: {}", &self.ast.borrow()[name]),
  285. Some(ne) => Ok(ne.clone()),
  286. }
  287. }
  288. }
  289. /// Evaluate this string as a standalone program, writing the
  290. /// results to stdout.
  291. pub fn run(&self, src: &str) -> Result<(), Error> {
  292. let lexed = crate::lexer::tokens(src);
  293. let stmts = self.parser.parse(&mut self.ast.borrow_mut(), lexed).map_err(|err| anyhow!("Got {:?}", err))?;
  294. let mut stdout = io::stdout();
  295. for stmt in stmts {
  296. self.execute(&stmt, &mut stdout)?;
  297. }
  298. Ok(())
  299. }
  300. /// Evaluate this string as a fragment in a REPL, writing the
  301. /// results to stdout. One way this differs from the standalone
  302. /// program is that it actually tries parsing twice: first it
  303. /// tries parsing the fragment normally, and then if that doesn't
  304. /// work it tries adding a `puts` ahead of it: this is hacky, but
  305. /// it allows the REPL to respond by printing values when someone
  306. /// simply types an expression.
  307. pub fn run_repl(&self, src: &str) -> Result<(), Error> {
  308. let lexed = crate::lexer::tokens(src);
  309. let stmts = {
  310. let mut ast = self.ast.borrow_mut();
  311. self.parser.parse(&mut ast, lexed)
  312. };
  313. let stmts = match stmts {
  314. Ok(stmts) => stmts,
  315. Err(err) => {
  316. let with_puts = format!("puts {}", src);
  317. let lexed = crate::lexer::tokens(&with_puts);
  318. if let Ok(stmts) = self.parser.parse(&mut self.ast.borrow_mut(), lexed) {
  319. stmts
  320. } else {
  321. bail!("{:?}", err);
  322. }
  323. }
  324. };
  325. for stmt in stmts {
  326. self.execute(&stmt, io::stdout())?;
  327. }
  328. Ok(())
  329. }
  330. /// Autocomplete this name. This doesn't make use of any
  331. /// contextual information (e.g. like function arguments or
  332. /// `let`-bound names) but instead tries to complete based
  333. /// entirely on the things in root scope.
  334. pub fn autocomplete(&self, fragment: &str, at_beginning: bool) -> Vec<String> {
  335. let mut possibilities = Vec::new();
  336. for name in self.root_scope.borrow().keys() {
  337. if self.ast.borrow()[*name].starts_with(fragment) {
  338. possibilities.push(self.ast.borrow()[*name].to_string());
  339. }
  340. }
  341. if at_beginning && "puts".starts_with(fragment) {
  342. possibilities.push("puts ".to_owned());
  343. }
  344. possibilities
  345. }
  346. /// Execute this statement, writing any output to the provided
  347. /// output writer. Right now, this will always start in root
  348. /// scope: there are no statements within functions.
  349. pub fn execute(&self, stmt: &Stmt, mut output: impl io::Write) -> Result<(), Error> {
  350. match stmt {
  351. // Evaluate the provided expression _all the way_
  352. // (i.e. recurisvely, not to WHNF) and write its
  353. // representation to the output.
  354. Stmt::Puts(expr) => {
  355. let val = self.eval(*expr, &None)?;
  356. let val = self.force(val)?;
  357. writeln!(output, "{}", val.to_string()).unwrap();
  358. }
  359. // Look up the provided name, and if it's not already
  360. // forced completely, then force it completely and
  361. // re-insert this name with the forced version.
  362. Stmt::Fix(name) => {
  363. let val = match self.lookup(&None, *name)? {
  364. Thunk::Expr(e, env) => self.eval(e, &env)?,
  365. // we need to handle this case in case it's
  366. // already in WHNF (e.g. a tuple whose elements
  367. // are not yet values)
  368. Thunk::Value(v) => v,
  369. // if it's not an expr or val, then our work here
  370. // is done
  371. _ => return Ok(()),
  372. };
  373. let val = self.force(val)?;
  374. self.root_scope
  375. .borrow_mut()
  376. .insert(*name, Thunk::Value(val));
  377. }
  378. // assign a given expression to a name, forcing it to a
  379. // value if the assignment is `fixed`.
  380. Stmt::Assn(fixed, name, expr) => {
  381. let thunk = if *fixed {
  382. let val = self.eval(*expr, &None)?;
  383. let val = self.force(val)?;
  384. Thunk::Value(val)
  385. } else {
  386. Thunk::Expr(*expr, None)
  387. };
  388. self.root_scope.borrow_mut().insert(*name, thunk);
  389. }
  390. // assign a simple disjunction of strings to a name,
  391. // forcing it to a value if the assignment is `fixed`.
  392. Stmt::LitAssn(fixed, name, strs) => {
  393. if *fixed {
  394. let choice = &strs[self.rand.borrow_mut().gen_range(0..strs.len())];
  395. self.root_scope.borrow_mut().insert(
  396. *name,
  397. Thunk::Value(Value::Lit(Literal::Str(choice.clone()))),
  398. );
  399. return Ok(());
  400. }
  401. let choices = strs
  402. .iter()
  403. .map(|s| Choice {
  404. weight: None,
  405. value: self
  406. .ast
  407. .borrow_mut()
  408. .add_expr(Expr::Lit(Literal::Str(s.clone()))),
  409. })
  410. .collect();
  411. let choices = self.ast.borrow_mut().add_expr(Expr::Chc(choices));
  412. self.root_scope
  413. .borrow_mut()
  414. .insert(*name, Thunk::Expr(choices, None));
  415. }
  416. }
  417. Ok(())
  418. }
  419. /// Given a value, force it recursively.
  420. fn force(&self, val: Value) -> Result<Value, Error> {
  421. match val {
  422. Value::Tup(values) => Ok(Value::Tup(
  423. values
  424. .into_iter()
  425. .map(|t| {
  426. let v = self.hnf(&t)?;
  427. let v = self.force(v)?;
  428. Ok(Thunk::Value(v))
  429. })
  430. .collect::<Result<Vec<Thunk>, Error>>()?,
  431. )),
  432. _ => Ok(val),
  433. }
  434. }
  435. /// Given a thunk, force it to WHNF.
  436. fn hnf(&self, thunk: &Thunk) -> Result<Value, Error> {
  437. match thunk {
  438. Thunk::Expr(expr, env) => self.eval(*expr, env),
  439. Thunk::Value(val) => Ok(val.clone()),
  440. Thunk::Builtin(b) => Ok(Value::Builtin(b)),
  441. }
  442. }
  443. /// Given an `ExprRef` and an environment, fetch that expression
  444. /// and then evalute it in that environment
  445. fn eval(&self, expr_ref: ExprRef, env: &Env) -> Result<Value, Error> {
  446. let expr = &self.ast.borrow()[expr_ref];
  447. match expr {
  448. // literals should be mostly cheap-ish to copy, so a
  449. // literal evaluates to a `Value` that's a copy of the
  450. // literal
  451. Expr::Lit(l) => Ok(Value::Lit(l.clone())),
  452. // `Nil` evalutes to `Nil`
  453. Expr::Nil => Ok(Value::Nil),
  454. // When a variable is used, we should look it up and
  455. // evaluate it to WHNF
  456. Expr::Var(v) => self.hnf(&self.lookup(env, *v)?),
  457. // for a catenation, we should fully evaluate all the
  458. // expressions, convert them to strings, and concatenate
  459. // them all.
  460. Expr::Cat(cat) => {
  461. // if we ever have a catentation of one, then don't
  462. // bother with the string: just evaluate the
  463. // expression.
  464. if cat.len() == 1 {
  465. self.eval(cat[0], env)
  466. } else {
  467. let mut buf = String::new();
  468. for expr in cat {
  469. let val = self.eval(*expr, env)?;
  470. let val = self.force(val)?;
  471. buf.push_str(&val.to_string());
  472. }
  473. Ok(Value::Lit(Literal::Str(buf)))
  474. }
  475. }
  476. // for choices, we should choose one with the appropriate
  477. // frequency and then evaluate it
  478. Expr::Chc(choices) => {
  479. // if we ever have only one choice, well, choose it:
  480. if choices.len() == 1 {
  481. self.eval(choices[0].value, env)
  482. } else {
  483. self.choose(choices, env)
  484. }
  485. }
  486. // for a tuple, we return a tuple of thunks to begin with,
  487. // to make sure that the values contained within are
  488. // appropriately lazy
  489. Expr::Tup(values) => Ok(Value::Tup(
  490. values
  491. .iter()
  492. .map(|v| Thunk::Expr(*v, env.clone()))
  493. .collect::<Vec<Thunk>>(),
  494. )),
  495. // for a range, choose randomly between the start and end
  496. // expressions
  497. Expr::Range(from, to) => {
  498. let from = self.eval(*from, env)?.as_num()?;
  499. let to = self.eval(*to, env)?.as_num()?;
  500. Ok(Value::Lit(Literal::Num(
  501. self.rand.borrow_mut().gen_range(from..=to),
  502. )))
  503. }
  504. // for a function, return a closure (i.e. the function
  505. // body paired with the current environment)
  506. Expr::Fun(_) => Ok(Value::Closure(Closure {
  507. func: expr_ref,
  508. scope: env.clone(),
  509. })),
  510. // for application, make sure the thing we're applying is
  511. // either a closure (i.e. the result of evaluating a
  512. // function) or a builtin, and then handle it
  513. // appropriately
  514. Expr::Ap(func, val) => match self.eval(*func, env)? {
  515. Value::Closure(c) => {
  516. let scrut = Thunk::Expr(*val, env.clone());
  517. self.eval_closure(&c, scrut)
  518. }
  519. Value::Builtin(builtin) => (builtin.callback)(self, *val, env),
  520. _ => bail!("Bad function: {:?}", func),
  521. },
  522. // for a let-expression, create a new scope, add the new
  523. // name to it (optionally forcing it if `fixed`) and then
  524. // evaluate the body within that scope.
  525. Expr::Let(fixed, name, val, body) => {
  526. let mut new_scope = HashMap::new();
  527. if *fixed {
  528. let val = self.eval(*val, env)?;
  529. let val = self.force(val)?;
  530. new_scope.insert(*name, Thunk::Value(val));
  531. } else {
  532. new_scope.insert(*name, Thunk::Expr(*val, env.clone()));
  533. };
  534. let new_scope = Rc::new(Scope {
  535. vars: new_scope,
  536. parent: env.clone(),
  537. });
  538. self.eval(*body, &Some(new_scope))
  539. }
  540. }
  541. }
  542. /// Evaluate a closure as applied to a given argument.
  543. ///
  544. /// There's a very subtle thing going on here: when we apply a
  545. /// closure to an expression, we should evaluate that expression
  546. /// _as far as we need to and no further_. That's why the `scrut`
  547. /// argument here is mutable: to start with, it'll be a
  548. /// `Thunk::Expr`. If the function uses a wildcard or variable
  549. /// match, it'll stay that way, but if we start matching against
  550. /// it, we'll evaluate it at least to WHNF to find out whether it
  551. /// maches, and _sometimes_ a little further.
  552. ///
  553. /// Here's where it gets tricky: we need to maintain that
  554. /// evaluation between branches so that we don't get Schrödinger's
  555. /// patterns. An example where that might work poorly if we're not
  556. /// careful is here:
  557. ///
  558. /// ```ignore
  559. /// {Foo => "1"; Foo => "2"; _ => "..."}.(Foo | Bar)
  560. /// ```
  561. ///
  562. /// It should be impossible to get `"2"` in this case. That means
  563. /// that we need to force the argument _and keep branching against
  564. /// the forced argument_. But we also want the following to still
  565. /// contain non-determinism:
  566. ///
  567. /// ```ignore
  568. /// {<Foo, x> => x x "!"; <Bar, x> => x x "?"}.<Foo | Bar, "a" | "b">
  569. /// ```
  570. ///
  571. /// The above program should print one of "aa!", "bb!", "aa?", or
  572. /// "bb?". That means it needs to
  573. /// 1. force the argument first to `<_, _>`, to make sure it's a
  574. /// two-element tuple
  575. /// 2. force the first element of the tuple to `Foo` or `Bar` to
  576. /// discriminate on it, but
  577. /// 3. _not_ force the second element of the tuple, because we
  578. /// want it to vary from invocation to invocation.
  579. ///
  580. /// So the way we do this is, we start by representing the
  581. /// argument as a `Thunk::Expr`, but allow the pattern-matching
  582. /// function to mutably replace it with progressively more
  583. /// evaluated versions of the same expression, and then that's the
  584. /// thing we put into scope in the body of the function.
  585. fn eval_closure(&self, closure: &Closure, mut scrut: Thunk) -> Result<Value, Error> {
  586. let ast = self.ast.borrow();
  587. let cases = match &ast[closure.func] {
  588. Expr::Fun(cases) => cases,
  589. // see the note attached to the definition of `Closure`
  590. _ => bail!("INVARIANT FAILED"),
  591. };
  592. // for each case
  593. for c in cases {
  594. // build a set of potential bindings, which `match_pat`
  595. // will update if it finds matching variables
  596. let mut bindings = Vec::new();
  597. if !self.match_pat(&c.pat, &mut scrut, &mut bindings)? {
  598. // if we didn't match, we don't care about any
  599. // bindings we've found: simply skip it
  600. continue;
  601. }
  602. // build a new scope from the bindings discovered
  603. let mut new_scope = HashMap::new();
  604. for (name, binding) in bindings {
  605. new_scope.insert(name, binding);
  606. }
  607. let new_scope = Rc::new(Scope {
  608. vars: new_scope,
  609. parent: closure.scope.clone(),
  610. });
  611. // and now evaluate the chosen branch body in the
  612. // newly-created scope
  613. return self.eval(c.expr, &Some(new_scope));
  614. }
  615. // we couldn't find a matching pattern, so throw an error
  616. bail!("No pattern in {:?} matched {:?}", cases, scrut);
  617. }
  618. /// attempt to match the thunk `scrut` against the pattern
  619. /// `pat`. If it matched, then it'll return `Ok(true)`, if it
  620. /// didn't, it'll return `Ok(false)`, and (because it might need
  621. /// to do incremental evaluation to check if the pattern matches)
  622. /// it'll return an error if forcing parts of the expression
  623. /// returns an error. The `bindings` vector will be filled with
  624. /// name-thunk pairs based on the pattern: if this returns
  625. /// `Ok(true)`, then those are the thunks that should be bound to
  626. /// names in the context, but otherwise those bindings can be
  627. /// safely ignored.
  628. fn match_pat(
  629. &self,
  630. pat: &Pat,
  631. scrut: &mut Thunk,
  632. bindings: &mut Vec<(Name, Thunk)>,
  633. ) -> Result<bool, Error> {
  634. if let Pat::Var(v) = pat {
  635. bindings.push((*v, scrut.clone()));
  636. return Ok(true);
  637. }
  638. if let Pat::Wildcard = pat {
  639. return Ok(true);
  640. }
  641. // if it's not just a variable, then we'll need to make sure
  642. // we've evaluated `scrut` at least one level from here
  643. if let Thunk::Expr(e, env) = scrut {
  644. *scrut = Thunk::Value(self.eval(*e, env)?)
  645. };
  646. // now we can match deeper patterns, at least a little
  647. match pat {
  648. // literals match if the thunk is an identical literal
  649. Pat::Lit(lhs) => {
  650. if let Thunk::Value(Value::Lit(rhs)) = scrut {
  651. Ok(lhs == rhs)
  652. } else {
  653. Ok(false)
  654. }
  655. }
  656. // tuples match if the thunk evaluates to a tuple of the
  657. // same size, and if all the patterns in the tuple match
  658. // the thunks in the expression
  659. Pat::Tup(pats) => {
  660. if let Thunk::Value(Value::Tup(thunks)) = scrut {
  661. if pats.len() != thunks.len() {
  662. return Ok(false);
  663. }
  664. for (p, t) in pats.iter().zip(thunks) {
  665. if !self.match_pat(p, t, bindings)? {
  666. return Ok(false);
  667. }
  668. }
  669. Ok(true)
  670. } else {
  671. Ok(false)
  672. }
  673. }
  674. // otherwise, Does Not Match
  675. _ => Ok(false),
  676. }
  677. }
  678. // this chooses an expressino from a choice, taking into account
  679. // the weights
  680. fn choose(&self, choices: &[Choice], env: &Env) -> Result<Value, Error> {
  681. let max = choices.iter().map(Choice::weight).sum();
  682. let mut choice = self.rand.borrow_mut().gen_range(0..max);
  683. for ch in choices {
  684. if choice < ch.weight() {
  685. return self.eval(ch.value, env);
  686. }
  687. choice -= ch.weight();
  688. }
  689. // if we got here, it means our math was wrong
  690. bail!("unreachable")
  691. }
  692. }