interp.rs 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762
  1. use crate::ast::*;
  2. use anyhow::{anyhow, bail, Error};
  3. use rand::Rng;
  4. use std::cell::RefCell;
  5. use std::collections::HashMap;
  6. use std::fmt;
  7. use std::io;
  8. use std::rc::Rc;
  9. /// A `Value` is a representation of the resut of evaluation. Note
  10. /// that a `Value` is a representation of something in _weak head
  11. /// normal form_: i.e. for compound expressions (right now just
  12. /// tuples) it might contain other values but it might contain
  13. /// unevaluated expressions as well.
  14. #[derive(Debug, Clone)]
  15. pub enum Value {
  16. Lit(Literal),
  17. Tup(Vec<Thunk>),
  18. Builtin(&'static BuiltinFunc),
  19. Closure(Closure),
  20. Nil,
  21. }
  22. impl fmt::Display for Value {
  23. fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
  24. self.with_str(|s| write!(f, "{}", s))
  25. }
  26. }
  27. impl Value {
  28. /// Convert this value to a Rust integer, failing otherwise
  29. fn as_num(&self) -> Result<i64, Error> {
  30. match self {
  31. Value::Lit(Literal::Num(n)) => Ok(*n),
  32. _ => self.with_str(|s| bail!("Expected number, got {}", s)),
  33. }
  34. }
  35. /// Convert this value to a Rust string, failing otherwise
  36. fn as_str(&self) -> Result<&str, Error> {
  37. match self {
  38. Value::Lit(Literal::Str(s)) => Ok(s),
  39. _ => self.with_str(|s| bail!("Expected string, got {}", s)),
  40. }
  41. }
  42. /// Convert this value to a Rust slice, failing otherwise
  43. fn as_tup(&self) -> Result<&[Thunk], Error> {
  44. match self {
  45. Value::Tup(vals) => Ok(vals),
  46. _ => self.with_str(|s| bail!("Expected tuple, got {}", s)),
  47. }
  48. }
  49. /// Convert this value to a closure, failing otherwise
  50. fn as_closure(&self) -> Result<&Closure, Error> {
  51. match self {
  52. Value::Closure(closure) => Ok(closure),
  53. _ => self.with_str(|s| bail!("Expected tuple, got {}", s)),
  54. }
  55. }
  56. /// Call the provided function with the string representation of
  57. /// this value. Note that this _will not force the value_ if it's
  58. /// not completely forced already: indeed, this can't, since it
  59. /// doesn't have access to the `State`. Unevaluated fragments of
  60. /// the value will be printed as `#<unevaluated>`.
  61. fn with_str<U>(&self, f: impl FnOnce(&str) -> U) -> U {
  62. match self {
  63. Value::Nil => f(""),
  64. Value::Lit(Literal::Str(s)) => f(s),
  65. Value::Lit(Literal::Atom(s)) => f(&format!("{:?}", s)),
  66. Value::Lit(Literal::Num(n)) => f(&format!("{}", n)),
  67. Value::Tup(values) => {
  68. let mut buf = String::new();
  69. buf.push('<');
  70. for (i, val) in values.iter().enumerate() {
  71. if i > 0 {
  72. buf.push_str(", ");
  73. }
  74. match val {
  75. Thunk::Value(v) => buf.push_str(&v.to_string()),
  76. Thunk::Expr(..) => buf.push_str("#<unevaluated>"),
  77. Thunk::Builtin(func) => buf.push_str(&format!("#<builtin {}>", func.name)),
  78. }
  79. }
  80. buf.push('>');
  81. f(&buf)
  82. }
  83. Value::Builtin(func) => f(&format!("#<builtin {}>", func.name)),
  84. Value::Closure(_) => f("#<lambda ...>"),
  85. }
  86. }
  87. }
  88. /// A representation of a builtin function implemented in Rust. This
  89. /// will be inserted into the global scope under the name provided as
  90. /// `name`.
  91. pub struct BuiltinFunc {
  92. /// The name of the builtin: this is used in error messages, in
  93. /// printing the value (e.g. in the case of `puts some-builtin`),
  94. /// and as the Matzo identifier used for this function.
  95. name: &'static str,
  96. /// The callback here is the Rust implementation of the function,
  97. /// where the provided `ExprRef` is the argument to the function.
  98. callback: &'static dyn Fn(&State, ExprRef, &Env) -> Result<Value, Error>,
  99. }
  100. impl fmt::Debug for BuiltinFunc {
  101. fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
  102. writeln!(fmt, "BuiltinFunc {{ name: {:?}, ... }}", self.name)
  103. }
  104. }
  105. /// The list of builtins provided at startup.
  106. ///
  107. /// TODO: move this to a separate file and clean it up
  108. const BUILTINS: &[BuiltinFunc] = &[
  109. BuiltinFunc {
  110. name: "rep",
  111. callback: &|state: &State, expr: ExprRef, env: &Env| -> Result<Value, Error> {
  112. let (rep, expr) = {
  113. let ast = state.ast.borrow();
  114. let args = match &ast[expr] {
  115. Expr::Tup(tup) => tup,
  116. _ => bail!("`rep`: expected tuple"),
  117. };
  118. if args.len() != 2 {
  119. bail!("`rep`: expected two arguments, got {}", args.len())
  120. }
  121. (args[0], args[1])
  122. };
  123. let mut buf = String::new();
  124. let num = state.eval(rep, env)?.as_num()?;
  125. for _ in 0..num {
  126. buf.push_str(&state.eval(expr, env)?.as_str()?.to_string());
  127. }
  128. Ok(Value::Lit(Literal::Str(buf)))
  129. },
  130. },
  131. BuiltinFunc {
  132. name: "length",
  133. callback: &|state: &State, expr: ExprRef, env: &Env| -> Result<Value, Error> {
  134. let args = match state.eval(expr, env)? {
  135. Value::Tup(tup) => tup,
  136. _ => bail!("`length`: expected tuple"),
  137. };
  138. Ok(Value::Lit(Literal::Num(args.len() as i64)))
  139. },
  140. },
  141. BuiltinFunc {
  142. name: "to-upper",
  143. callback: &|state: &State, expr: ExprRef, env: &Env| -> Result<Value, Error> {
  144. let s = state.eval(expr, env)?;
  145. Ok(Value::Lit(Literal::Str(s.as_str()?.to_uppercase())))
  146. },
  147. },
  148. BuiltinFunc {
  149. name: "capitalize",
  150. callback: &|state: &State, expr: ExprRef, env: &Env| -> Result<Value, Error> {
  151. let s = state.eval(expr, env)?;
  152. Ok(Value::Lit(Literal::Str(titlecase::titlecase(s.as_str()?))))
  153. },
  154. },
  155. BuiltinFunc {
  156. name: "to-lower",
  157. callback: &|state: &State, expr: ExprRef, env: &Env| -> Result<Value, Error> {
  158. let s = state.eval(expr, env)?;
  159. Ok(Value::Lit(Literal::Str(s.as_str()?.to_lowercase())))
  160. },
  161. },
  162. BuiltinFunc {
  163. name: "concat",
  164. callback: &|state: &State, expr: ExprRef, env: &Env| -> Result<Value, Error> {
  165. let val = state.eval(expr, env)?;
  166. let tup = val.as_tup()?;
  167. let mut contents = Vec::new();
  168. for elem in tup {
  169. for th in state.hnf(elem)?.as_tup()? {
  170. contents.push(th.clone());
  171. }
  172. }
  173. Ok(Value::Tup(contents))
  174. },
  175. },
  176. BuiltinFunc {
  177. name: "tuple-fold",
  178. callback: &|state: &State, expr: ExprRef, env: &Env| -> Result<Value, Error> {
  179. let val = state.eval(expr, env)?;
  180. let args = val.as_tup()?;
  181. if let [func, init, tup] = args {
  182. let func = state.hnf(func)?;
  183. let tup = state.hnf(tup)?;
  184. let mut result = init.clone();
  185. for t in tup.as_tup()? {
  186. let partial = state.eval_closure(func.as_closure()?, result)?;
  187. result = Thunk::Value(state.eval_closure(partial.as_closure()?, t.clone())?);
  188. }
  189. state.hnf(&result)
  190. } else {
  191. bail!("`tuple-fold`: expected 3 arguments, got {}", args.len());
  192. }
  193. },
  194. },
  195. ];
  196. /// The name `Thunk` is a bit of a misnomer here: this is
  197. /// _potentially_ a `Thunk`, but represents anything that can be
  198. /// stored in a variable: it might be an unevaluated expression (along
  199. /// with the environment where it should be evaluated), or it might be
  200. /// a partially- or fully-forced value, or it might be a builtin
  201. /// function.
  202. #[derive(Debug, Clone)]
  203. pub enum Thunk {
  204. Expr(ExprRef, Env),
  205. Value(Value),
  206. Builtin(&'static BuiltinFunc),
  207. }
  208. /// An environment is either `None` (i.e. in the root scope) or `Some`
  209. /// of some reference-counted scope (since those scopes might be
  210. /// shared in several places, e.g. as pointers in thunks or closures).
  211. type Env = Option<Rc<Scope>>;
  212. /// A `Scope` represents a _non-root_ scope (since the root scope is
  213. /// treated in a special way) and contains a map from variables to
  214. /// `Thunk`s, along with a parent pointer.
  215. #[derive(Debug)]
  216. pub struct Scope {
  217. vars: HashMap<Name, Thunk>,
  218. parent: Env,
  219. }
  220. /// A `Closure` is a pointer to the expression that represents a
  221. /// function implementation along with the scope in which it was
  222. /// defined.
  223. ///
  224. /// IMPORTANT INVARIANT: the `func` here should be an `ExprRef` which
  225. /// references a `Func`. The reason we don't copy the `Func` in is
  226. /// because, well, that'd be copying, and we can bypass that, but we
  227. /// have to maintain that invariant explicitly, otherwise we'll panic.
  228. #[derive(Debug, Clone)]
  229. pub struct Closure {
  230. func: ExprRef,
  231. scope: Env,
  232. }
  233. /// A `State` contains all the interpreter state needed to run a
  234. /// `Matzo` program.
  235. pub struct State {
  236. /// An `ASTArena` that contains all the packed information that
  237. /// results from parsing a program.
  238. ast: RefCell<ASTArena>,
  239. /// The root scope of the program, which contains all the
  240. /// top-level definitions and builtins.
  241. root_scope: RefCell<HashMap<Name, Thunk>>,
  242. /// The thread-local RNG.
  243. rand: RefCell<rand::rngs::ThreadRng>,
  244. /// The instantiated parser used to parse Matzo programs
  245. parser: crate::grammar::StmtsParser,
  246. }
  247. impl Default for State {
  248. fn default() -> State {
  249. Self::new()
  250. }
  251. }
  252. impl State {
  253. /// This initializes a new `State` and adds all the builtin
  254. /// functions to the root scope
  255. pub fn new() -> State {
  256. let s = State {
  257. root_scope: RefCell::new(HashMap::new()),
  258. rand: RefCell::new(rand::thread_rng()),
  259. parser: crate::grammar::StmtsParser::new(),
  260. ast: RefCell::new(ASTArena::new()),
  261. };
  262. for builtin in BUILTINS {
  263. let sym = s.ast.borrow_mut().add_string(builtin.name);
  264. s.root_scope
  265. .borrow_mut()
  266. .insert(sym, Thunk::Builtin(builtin));
  267. }
  268. s
  269. }
  270. /// Get the underlying AST. (This is mostly useful for testing
  271. /// purposes, where we don't want to have a function do the
  272. /// parsing and evaluating for us at the same time.)
  273. pub fn get_ast(&self) -> &RefCell<ASTArena> {
  274. &self.ast
  275. }
  276. /// Look up a `Name` in the provided `Env`. This will result in
  277. /// either a `Thunk` (i.e. the named value) or an error that
  278. /// indicates the missing name.
  279. fn lookup(&self, env: &Env, name: Name) -> Result<Thunk, Error> {
  280. if let Some(env) = env {
  281. if let Some(ne) = env.vars.get(&name) {
  282. Ok(ne.clone())
  283. } else {
  284. self.lookup(&env.parent, name)
  285. }
  286. } else {
  287. match self.root_scope.borrow().get(&name) {
  288. None => bail!("no such thing: {}", &self.ast.borrow()[name]),
  289. Some(ne) => Ok(ne.clone()),
  290. }
  291. }
  292. }
  293. /// Evaluate this string as a standalone program, writing the
  294. /// results to stdout.
  295. pub fn run(&self, src: &str) -> Result<(), Error> {
  296. let lexed = crate::lexer::tokens(src);
  297. let stmts = self
  298. .parser
  299. .parse(&mut self.ast.borrow_mut(), lexed)
  300. .map_err(|err| anyhow!("Got {:?}", err))?;
  301. let mut stdout = io::stdout();
  302. for stmt in stmts {
  303. self.execute(&stmt, &mut stdout)?;
  304. }
  305. Ok(())
  306. }
  307. /// Evaluate this string as a fragment in a REPL, writing the
  308. /// results to stdout. One way this differs from the standalone
  309. /// program is that it actually tries parsing twice: first it
  310. /// tries parsing the fragment normally, and then if that doesn't
  311. /// work it tries adding a `puts` ahead of it: this is hacky, but
  312. /// it allows the REPL to respond by printing values when someone
  313. /// simply types an expression.
  314. pub fn run_repl(&self, src: &str) -> Result<(), Error> {
  315. let lexed = crate::lexer::tokens(src);
  316. let stmts = {
  317. let mut ast = self.ast.borrow_mut();
  318. self.parser.parse(&mut ast, lexed)
  319. };
  320. let stmts = match stmts {
  321. Ok(stmts) => stmts,
  322. Err(err) => {
  323. let with_puts = format!("puts {}", src);
  324. let lexed = crate::lexer::tokens(&with_puts);
  325. if let Ok(stmts) = self.parser.parse(&mut self.ast.borrow_mut(), lexed) {
  326. stmts
  327. } else {
  328. bail!("{:?}", err);
  329. }
  330. }
  331. };
  332. for stmt in stmts {
  333. self.execute(&stmt, io::stdout())?;
  334. }
  335. Ok(())
  336. }
  337. /// Autocomplete this name. This doesn't make use of any
  338. /// contextual information (e.g. like function arguments or
  339. /// `let`-bound names) but instead tries to complete based
  340. /// entirely on the things in root scope.
  341. pub fn autocomplete(&self, fragment: &str, at_beginning: bool) -> Vec<String> {
  342. let mut possibilities = Vec::new();
  343. for name in self.root_scope.borrow().keys() {
  344. if self.ast.borrow()[*name].starts_with(fragment) {
  345. possibilities.push(self.ast.borrow()[*name].to_string());
  346. }
  347. }
  348. if at_beginning && "puts".starts_with(fragment) {
  349. possibilities.push("puts ".to_owned());
  350. }
  351. possibilities
  352. }
  353. /// Execute this statement, writing any output to the provided
  354. /// output writer. Right now, this will always start in root
  355. /// scope: there are no statements within functions.
  356. pub fn execute(&self, stmt: &Stmt, mut output: impl io::Write) -> Result<(), Error> {
  357. match stmt {
  358. // Evaluate the provided expression _all the way_
  359. // (i.e. recurisvely, not to WHNF) and write its
  360. // representation to the output.
  361. Stmt::Puts(expr) => {
  362. let val = self.eval(*expr, &None)?;
  363. let val = self.force(val)?;
  364. writeln!(output, "{}", val.to_string()).unwrap();
  365. }
  366. // Look up the provided name, and if it's not already
  367. // forced completely, then force it completely and
  368. // re-insert this name with the forced version.
  369. Stmt::Fix(name) => {
  370. let val = match self.lookup(&None, *name)? {
  371. Thunk::Expr(e, env) => self.eval(e, &env)?,
  372. // we need to handle this case in case it's
  373. // already in WHNF (e.g. a tuple whose elements
  374. // are not yet values)
  375. Thunk::Value(v) => v,
  376. // if it's not an expr or val, then our work here
  377. // is done
  378. _ => return Ok(()),
  379. };
  380. let val = self.force(val)?;
  381. self.root_scope
  382. .borrow_mut()
  383. .insert(*name, Thunk::Value(val));
  384. }
  385. // assign a given expression to a name, forcing it to a
  386. // value if the assignment is `fixed`.
  387. Stmt::Assn(fixed, name, expr) => {
  388. let thunk = if *fixed {
  389. let val = self.eval(*expr, &None)?;
  390. let val = self.force(val)?;
  391. Thunk::Value(val)
  392. } else {
  393. Thunk::Expr(*expr, None)
  394. };
  395. self.root_scope.borrow_mut().insert(*name, thunk);
  396. }
  397. // assign a simple disjunction of strings to a name,
  398. // forcing it to a value if the assignment is `fixed`.
  399. Stmt::LitAssn(fixed, name, strs) => {
  400. if *fixed {
  401. let choice = &strs[self.rand.borrow_mut().gen_range(0..strs.len())];
  402. self.root_scope.borrow_mut().insert(
  403. *name,
  404. Thunk::Value(Value::Lit(Literal::Str(choice.clone()))),
  405. );
  406. return Ok(());
  407. }
  408. let choices = strs
  409. .iter()
  410. .map(|s| Choice {
  411. weight: None,
  412. value: self
  413. .ast
  414. .borrow_mut()
  415. .add_expr(Expr::Lit(Literal::Str(s.clone()))),
  416. })
  417. .collect();
  418. let choices = self.ast.borrow_mut().add_expr(Expr::Chc(choices));
  419. self.root_scope
  420. .borrow_mut()
  421. .insert(*name, Thunk::Expr(choices, None));
  422. }
  423. }
  424. Ok(())
  425. }
  426. /// Given a value, force it recursively.
  427. fn force(&self, val: Value) -> Result<Value, Error> {
  428. match val {
  429. Value::Tup(values) => Ok(Value::Tup(
  430. values
  431. .into_iter()
  432. .map(|t| {
  433. let v = self.hnf(&t)?;
  434. let v = self.force(v)?;
  435. Ok(Thunk::Value(v))
  436. })
  437. .collect::<Result<Vec<Thunk>, Error>>()?,
  438. )),
  439. _ => Ok(val),
  440. }
  441. }
  442. /// Given a thunk, force it to WHNF.
  443. fn hnf(&self, thunk: &Thunk) -> Result<Value, Error> {
  444. match thunk {
  445. Thunk::Expr(expr, env) => self.eval(*expr, env),
  446. Thunk::Value(val) => Ok(val.clone()),
  447. Thunk::Builtin(b) => Ok(Value::Builtin(b)),
  448. }
  449. }
  450. /// Given an `ExprRef` and an environment, fetch that expression
  451. /// and then evalute it in that environment
  452. fn eval(&self, expr_ref: ExprRef, env: &Env) -> Result<Value, Error> {
  453. let expr = &self.ast.borrow()[expr_ref];
  454. match expr {
  455. // literals should be mostly cheap-ish to copy, so a
  456. // literal evaluates to a `Value` that's a copy of the
  457. // literal
  458. Expr::Lit(l) => Ok(Value::Lit(l.clone())),
  459. // `Nil` evalutes to `Nil`
  460. Expr::Nil => Ok(Value::Nil),
  461. // When a variable is used, we should look it up and
  462. // evaluate it to WHNF
  463. Expr::Var(v) => self.hnf(&self.lookup(env, *v)?),
  464. // for a catenation, we should fully evaluate all the
  465. // expressions, convert them to strings, and concatenate
  466. // them all.
  467. Expr::Cat(cat) => {
  468. // if we ever have a catentation of one, then don't
  469. // bother with the string: just evaluate the
  470. // expression.
  471. if cat.len() == 1 {
  472. self.eval(cat[0], env)
  473. } else {
  474. let mut buf = String::new();
  475. for expr in cat {
  476. let val = self.eval(*expr, env)?;
  477. let val = self.force(val)?;
  478. buf.push_str(&val.to_string());
  479. }
  480. Ok(Value::Lit(Literal::Str(buf)))
  481. }
  482. }
  483. // for choices, we should choose one with the appropriate
  484. // frequency and then evaluate it
  485. Expr::Chc(choices) => {
  486. // if we ever have only one choice, well, choose it:
  487. if choices.len() == 1 {
  488. self.eval(choices[0].value, env)
  489. } else {
  490. self.choose(choices, env)
  491. }
  492. }
  493. // for a tuple, we return a tuple of thunks to begin with,
  494. // to make sure that the values contained within are
  495. // appropriately lazy
  496. Expr::Tup(values) => Ok(Value::Tup(
  497. values
  498. .iter()
  499. .map(|v| Thunk::Expr(*v, env.clone()))
  500. .collect::<Vec<Thunk>>(),
  501. )),
  502. // for a range, choose randomly between the start and end
  503. // expressions
  504. Expr::Range(from, to) => {
  505. let from = self.eval(*from, env)?.as_num()?;
  506. let to = self.eval(*to, env)?.as_num()?;
  507. Ok(Value::Lit(Literal::Num(
  508. self.rand.borrow_mut().gen_range(from..=to),
  509. )))
  510. }
  511. // for a function, return a closure (i.e. the function
  512. // body paired with the current environment)
  513. Expr::Fun(_) => Ok(Value::Closure(Closure {
  514. func: expr_ref,
  515. scope: env.clone(),
  516. })),
  517. // for application, make sure the thing we're applying is
  518. // either a closure (i.e. the result of evaluating a
  519. // function) or a builtin, and then handle it
  520. // appropriately
  521. Expr::Ap(func, val) => match self.eval(*func, env)? {
  522. Value::Closure(c) => {
  523. let scrut = Thunk::Expr(*val, env.clone());
  524. self.eval_closure(&c, scrut)
  525. }
  526. Value::Builtin(builtin) => (builtin.callback)(self, *val, env),
  527. _ => bail!("Bad function: {:?}", func),
  528. },
  529. // for a let-expression, create a new scope, add the new
  530. // name to it (optionally forcing it if `fixed`) and then
  531. // evaluate the body within that scope.
  532. Expr::Let(fixed, name, val, body) => {
  533. let mut new_scope = HashMap::new();
  534. if *fixed {
  535. let val = self.eval(*val, env)?;
  536. let val = self.force(val)?;
  537. new_scope.insert(*name, Thunk::Value(val));
  538. } else {
  539. new_scope.insert(*name, Thunk::Expr(*val, env.clone()));
  540. };
  541. let new_scope = Rc::new(Scope {
  542. vars: new_scope,
  543. parent: env.clone(),
  544. });
  545. self.eval(*body, &Some(new_scope))
  546. }
  547. Expr::Case(scrut, _) => {
  548. let closure = Closure {
  549. func: expr_ref,
  550. scope: env.clone(),
  551. };
  552. self.eval_closure(&closure, Thunk::Expr(*scrut, env.clone()))
  553. }
  554. }
  555. }
  556. /// Evaluate a closure as applied to a given argument.
  557. ///
  558. /// There's a very subtle thing going on here: when we apply a
  559. /// closure to an expression, we should evaluate that expression
  560. /// _as far as we need to and no further_. That's why the `scrut`
  561. /// argument here is mutable: to start with, it'll be a
  562. /// `Thunk::Expr`. If the function uses a wildcard or variable
  563. /// match, it'll stay that way, but if we start matching against
  564. /// it, we'll evaluate it at least to WHNF to find out whether it
  565. /// maches, and _sometimes_ a little further.
  566. ///
  567. /// Here's where it gets tricky: we need to maintain that
  568. /// evaluation between branches so that we don't get Schrödinger's
  569. /// patterns. An example where that might work poorly if we're not
  570. /// careful is here:
  571. ///
  572. /// ```ignore
  573. /// {Foo => "1"; Foo => "2"; _ => "..."}.(Foo | Bar)
  574. /// ```
  575. ///
  576. /// It should be impossible to get `"2"` in this case. That means
  577. /// that we need to force the argument _and keep branching against
  578. /// the forced argument_. But we also want the following to still
  579. /// contain non-determinism:
  580. ///
  581. /// ```ignore
  582. /// {<Foo, x> => x x "!"; <Bar, x> => x x "?"}.<Foo | Bar, "a" | "b">
  583. /// ```
  584. ///
  585. /// The above program should print one of "aa!", "bb!", "aa?", or
  586. /// "bb?". That means it needs to
  587. /// 1. force the argument first to `<_, _>`, to make sure it's a
  588. /// two-element tuple
  589. /// 2. force the first element of the tuple to `Foo` or `Bar` to
  590. /// discriminate on it, but
  591. /// 3. _not_ force the second element of the tuple, because we
  592. /// want it to vary from invocation to invocation.
  593. ///
  594. /// So the way we do this is, we start by representing the
  595. /// argument as a `Thunk::Expr`, but allow the pattern-matching
  596. /// function to mutably replace it with progressively more
  597. /// evaluated versions of the same expression, and then that's the
  598. /// thing we put into scope in the body of the function.
  599. fn eval_closure(&self, closure: &Closure, mut scrut: Thunk) -> Result<Value, Error> {
  600. let ast = self.ast.borrow();
  601. let cases = match &ast[closure.func] {
  602. Expr::Fun(cases) => cases,
  603. Expr::Case(_, cases) => cases,
  604. // see the note attached to the definition of `Closure`
  605. _ => bail!("INVARIANT FAILED"),
  606. };
  607. // for each case
  608. for c in cases {
  609. // build a set of potential bindings, which `match_pat`
  610. // will update if it finds matching variables
  611. let mut bindings = Vec::new();
  612. if !self.match_pat(&c.pat, &mut scrut, &mut bindings)? {
  613. // if we didn't match, we don't care about any
  614. // bindings we've found: simply skip it
  615. continue;
  616. }
  617. // build a new scope from the bindings discovered
  618. let mut new_scope = HashMap::new();
  619. for (name, binding) in bindings {
  620. new_scope.insert(name, binding);
  621. }
  622. let new_scope = Rc::new(Scope {
  623. vars: new_scope,
  624. parent: closure.scope.clone(),
  625. });
  626. // and now evaluate the chosen branch body in the
  627. // newly-created scope
  628. return self.eval(c.expr, &Some(new_scope));
  629. }
  630. // we couldn't find a matching pattern, so throw an error
  631. bail!("No pattern in {:?} matched {:?}", cases, scrut);
  632. }
  633. /// attempt to match the thunk `scrut` against the pattern
  634. /// `pat`. If it matched, then it'll return `Ok(true)`, if it
  635. /// didn't, it'll return `Ok(false)`, and (because it might need
  636. /// to do incremental evaluation to check if the pattern matches)
  637. /// it'll return an error if forcing parts of the expression
  638. /// returns an error. The `bindings` vector will be filled with
  639. /// name-thunk pairs based on the pattern: if this returns
  640. /// `Ok(true)`, then those are the thunks that should be bound to
  641. /// names in the context, but otherwise those bindings can be
  642. /// safely ignored.
  643. fn match_pat(
  644. &self,
  645. pat: &Pat,
  646. scrut: &mut Thunk,
  647. bindings: &mut Vec<(Name, Thunk)>,
  648. ) -> Result<bool, Error> {
  649. if let Pat::Var(v) = pat {
  650. bindings.push((*v, scrut.clone()));
  651. return Ok(true);
  652. }
  653. if let Pat::Wildcard = pat {
  654. return Ok(true);
  655. }
  656. // if it's not just a variable, then we'll need to make sure
  657. // we've evaluated `scrut` at least one level from here
  658. if let Thunk::Expr(e, env) = scrut {
  659. *scrut = Thunk::Value(self.eval(*e, env)?)
  660. };
  661. // now we can match deeper patterns, at least a little
  662. match pat {
  663. // literals match if the thunk is an identical literal
  664. Pat::Lit(lhs) => {
  665. if let Thunk::Value(Value::Lit(rhs)) = scrut {
  666. Ok(lhs == rhs)
  667. } else {
  668. Ok(false)
  669. }
  670. }
  671. // tuples match if the thunk evaluates to a tuple of the
  672. // same size, and if all the patterns in the tuple match
  673. // the thunks in the expression
  674. Pat::Tup(pats) => {
  675. if let Thunk::Value(Value::Tup(thunks)) = scrut {
  676. if pats.len() != thunks.len() {
  677. return Ok(false);
  678. }
  679. for (p, t) in pats.iter().zip(thunks) {
  680. if !self.match_pat(p, t, bindings)? {
  681. return Ok(false);
  682. }
  683. }
  684. Ok(true)
  685. } else {
  686. Ok(false)
  687. }
  688. }
  689. // otherwise, Does Not Match
  690. _ => Ok(false),
  691. }
  692. }
  693. // this chooses an expressino from a choice, taking into account
  694. // the weights
  695. fn choose(&self, choices: &[Choice], env: &Env) -> Result<Value, Error> {
  696. let max = choices.iter().map(Choice::weight).sum();
  697. let mut choice = self.rand.borrow_mut().gen_range(0..max);
  698. for ch in choices {
  699. if choice < ch.weight() {
  700. return self.eval(ch.value, env);
  701. }
  702. choice -= ch.weight();
  703. }
  704. // if we got here, it means our math was wrong
  705. bail!("unreachable")
  706. }
  707. }