interp.rs 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751
  1. use crate::ast::*;
  2. use anyhow::{Error,anyhow,bail};
  3. use rand::Rng;
  4. use std::cell::RefCell;
  5. use std::collections::HashMap;
  6. use std::fmt;
  7. use std::io;
  8. use std::rc::Rc;
  9. /// A `Value` is a representation of the resut of evaluation. Note
  10. /// that a `Value` is a representation of something in _weak head
  11. /// normal form_: i.e. for compound expressions (right now just
  12. /// tuples) it might contain other values but it might contain
  13. /// unevaluated expressions as well.
  14. #[derive(Debug, Clone)]
  15. pub enum Value {
  16. Lit(Literal),
  17. Tup(Vec<Thunk>),
  18. Builtin(&'static BuiltinFunc),
  19. Closure(Closure),
  20. Nil,
  21. }
  22. impl fmt::Display for Value {
  23. fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
  24. self.with_str(|s| write!(f, "{}", s))
  25. }
  26. }
  27. impl Value {
  28. /// Convert this value to a Rust integer, failing otherwise
  29. fn as_num(&self) -> Result<i64, Error> {
  30. match self {
  31. Value::Lit(Literal::Num(n)) => Ok(*n),
  32. _ => self.with_str(|s| bail!("Expected number, got {}", s)),
  33. }
  34. }
  35. /// Convert this value to a Rust string, failing otherwise
  36. fn as_str(&self) -> Result<&str, Error> {
  37. match self {
  38. Value::Lit(Literal::Str(s)) => Ok(s),
  39. _ => self.with_str(|s| bail!("Expected string, got {}", s)),
  40. }
  41. }
  42. /// Convert this value to a Rust slice, failing otherwise
  43. fn as_tup(&self) -> Result<&[Thunk], Error> {
  44. match self {
  45. Value::Tup(vals) => Ok(vals),
  46. _ => self.with_str(|s| bail!("Expected tuple, got {}", s)),
  47. }
  48. }
  49. /// Convert this value to a closure, failing otherwise
  50. fn as_closure(&self) -> Result<&Closure, Error> {
  51. match self {
  52. Value::Closure(closure) => Ok(closure),
  53. _ => self.with_str(|s| bail!("Expected tuple, got {}", s)),
  54. }
  55. }
  56. /// Call the provided function with the string representation of
  57. /// this value. Note that this _will not force the value_ if it's
  58. /// not completely forced already: indeed, this can't, since it
  59. /// doesn't have access to the `State`. Unevaluated fragments of
  60. /// the value will be printed as `#<unevaluated>`.
  61. fn with_str<U>(&self, f: impl FnOnce(&str) -> U) -> U {
  62. match self {
  63. Value::Nil => f(""),
  64. Value::Lit(Literal::Str(s)) => f(s),
  65. Value::Lit(Literal::Atom(s)) => f(&format!("{:?}", s)),
  66. Value::Lit(Literal::Num(n)) => f(&format!("{}", n)),
  67. Value::Tup(values) => {
  68. let mut buf = String::new();
  69. buf.push('<');
  70. for (i, val) in values.iter().enumerate() {
  71. if i > 0 {
  72. buf.push_str(", ");
  73. }
  74. match val {
  75. Thunk::Value(v) => buf.push_str(&v.to_string()),
  76. Thunk::Expr(..) => buf.push_str("#<unevaluated>"),
  77. Thunk::Builtin(func) => buf.push_str(&format!("#<builtin {}>", func.name)),
  78. }
  79. }
  80. buf.push('>');
  81. f(&buf)
  82. }
  83. Value::Builtin(func) => f(&format!("#<builtin {}>", func.name)),
  84. Value::Closure(_) => f("#<lambda ...>"),
  85. }
  86. }
  87. }
  88. /// A representation of a builtin function implemented in Rust. This
  89. /// will be inserted into the global scope under the name provided as
  90. /// `name`.
  91. pub struct BuiltinFunc {
  92. /// The name of the builtin: this is used in error messages, in
  93. /// printing the value (e.g. in the case of `puts some-builtin`),
  94. /// and as the Matzo identifier used for this function.
  95. name: &'static str,
  96. /// The callback here is the Rust implementation of the function,
  97. /// where the provided `ExprRef` is the argument to the function.
  98. callback: &'static dyn Fn(&State, ExprRef, &Env) -> Result<Value, Error>,
  99. }
  100. impl fmt::Debug for BuiltinFunc {
  101. fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
  102. writeln!(fmt, "BuiltinFunc {{ name: {:?}, ... }}", self.name)
  103. }
  104. }
  105. /// The list of builtins provided at startup.
  106. ///
  107. /// TODO: move this to a separate file and clean it up
  108. const BUILTINS: &[BuiltinFunc] = &[
  109. BuiltinFunc {
  110. name: "rep",
  111. callback: &|state: &State, expr: ExprRef, env: &Env| -> Result<Value, Error> {
  112. let (rep, expr) = {
  113. let ast = state.ast.borrow();
  114. let args = match &ast[expr] {
  115. Expr::Tup(tup) => tup,
  116. _ => bail!("`rep`: expected tuple"),
  117. };
  118. if args.len() != 2 {
  119. bail!("`rep`: expected two arguments, got {}", args.len())
  120. }
  121. (args[0], args[1])
  122. };
  123. let mut buf = String::new();
  124. let num = state.eval(rep, env)?.as_num()?;
  125. for _ in 0..num {
  126. buf.push_str(&state.eval(expr, env)?.as_str()?.to_string());
  127. }
  128. Ok(Value::Lit(Literal::Str(buf)))
  129. },
  130. },
  131. BuiltinFunc {
  132. name: "length",
  133. callback: &|state: &State, expr: ExprRef, env: &Env| -> Result<Value, Error> {
  134. let args = match state.eval(expr, env)? {
  135. Value::Tup(tup) => tup,
  136. _ => bail!("`length`: expected tuple"),
  137. };
  138. Ok(Value::Lit(Literal::Num(args.len() as i64)))
  139. },
  140. },
  141. BuiltinFunc {
  142. name: "to-upper",
  143. callback: &|state: &State, expr: ExprRef, env: &Env| -> Result<Value, Error> {
  144. let s = state.eval(expr, env)?;
  145. Ok(Value::Lit(Literal::Str(s.as_str()?.to_uppercase())))
  146. },
  147. },
  148. BuiltinFunc {
  149. name: "to-lower",
  150. callback: &|state: &State, expr: ExprRef, env: &Env| -> Result<Value, Error> {
  151. let s = state.eval(expr, env)?;
  152. Ok(Value::Lit(Literal::Str(s.as_str()?.to_lowercase())))
  153. },
  154. },
  155. BuiltinFunc {
  156. name: "concat",
  157. callback: &|state: &State, expr: ExprRef, env: &Env| -> Result<Value, Error> {
  158. let val = state.eval(expr, env)?;
  159. let tup = val.as_tup()?;
  160. let mut contents = Vec::new();
  161. for elem in tup {
  162. for th in state.hnf(elem)?.as_tup()? {
  163. contents.push(th.clone());
  164. }
  165. }
  166. Ok(Value::Tup(contents))
  167. },
  168. },
  169. BuiltinFunc {
  170. name: "tuple-fold",
  171. callback: &|state: &State, expr: ExprRef, env: &Env| -> Result<Value, Error> {
  172. let val = state.eval(expr, env)?;
  173. let args = val.as_tup()?;
  174. if args.len() != 3 {
  175. bail!("`tuple-fold`: expected 3 arguments, got {}", args.len());
  176. }
  177. let func = &args[0];
  178. let init = &args[1];
  179. let tup = &args[2];
  180. let func = state.hnf(func)?;
  181. let tup = state.hnf(tup)?;
  182. let mut result = init.clone();
  183. for t in tup.as_tup()? {
  184. let partial = state.eval_closure(func.as_closure()?, result)?;
  185. result = Thunk::Value(state.eval_closure(partial.as_closure()?, t.clone())?);
  186. }
  187. state.hnf(&result)
  188. },
  189. },
  190. ];
  191. /// The name `Thunk` is a bit of a misnomer here: this is
  192. /// _potentially_ a `Thunk`, but represents anything that can be
  193. /// stored in a variable: it might be an unevaluated expression (along
  194. /// with the environment where it should be evaluated), or it might be
  195. /// a partially- or fully-forced value, or it might be a builtin
  196. /// function.
  197. #[derive(Debug, Clone)]
  198. pub enum Thunk {
  199. Expr(ExprRef, Env),
  200. Value(Value),
  201. Builtin(&'static BuiltinFunc),
  202. }
  203. /// An environment is either `None` (i.e. in the root scope) or `Some`
  204. /// of some reference-counted scope (since those scopes might be
  205. /// shared in several places, e.g. as pointers in thunks or closures).
  206. type Env = Option<Rc<Scope>>;
  207. /// A `Scope` represents a _non-root_ scope (since the root scope is
  208. /// treated in a special way) and contains a map from variables to
  209. /// `Thunk`s, along with a parent pointer.
  210. #[derive(Debug)]
  211. pub struct Scope {
  212. vars: HashMap<Name, Thunk>,
  213. parent: Env,
  214. }
  215. /// A `Closure` is a pointer to the expression that represents a
  216. /// function implementation along with the scope in which it was
  217. /// defined.
  218. ///
  219. /// IMPORTANT INVARIANT: the `func` here should be an `ExprRef` which
  220. /// references a `Func`. The reason we don't copy the `Func` in is
  221. /// because, well, that'd be copying, and we can bypass that, but we
  222. /// have to maintain that invariant explicitly, otherwise we'll panic.
  223. #[derive(Debug, Clone)]
  224. pub struct Closure {
  225. func: ExprRef,
  226. scope: Env,
  227. }
  228. /// A `State` contains all the interpreter state needed to run a
  229. /// `Matzo` program.
  230. pub struct State {
  231. /// An `ASTArena` that contains all the packed information that
  232. /// results from parsing a program.
  233. ast: RefCell<ASTArena>,
  234. /// The root scope of the program, which contains all the
  235. /// top-level definitions and builtins.
  236. root_scope: RefCell<HashMap<Name, Thunk>>,
  237. /// The thread-local RNG.
  238. rand: RefCell<rand::rngs::ThreadRng>,
  239. /// The instantiated parser used to parse Matzo programs
  240. parser: crate::grammar::StmtsParser,
  241. }
  242. impl Default for State {
  243. fn default() -> State {
  244. Self::new()
  245. }
  246. }
  247. impl State {
  248. /// This initializes a new `State` and adds all the builtin
  249. /// functions to the root scope
  250. pub fn new() -> State {
  251. let s = State {
  252. root_scope: RefCell::new(HashMap::new()),
  253. rand: RefCell::new(rand::thread_rng()),
  254. parser: crate::grammar::StmtsParser::new(),
  255. ast: RefCell::new(ASTArena::new()),
  256. };
  257. for builtin in BUILTINS {
  258. let sym = s.ast.borrow_mut().add_string(builtin.name);
  259. s.root_scope
  260. .borrow_mut()
  261. .insert(sym, Thunk::Builtin(builtin));
  262. }
  263. s
  264. }
  265. /// Get the underlying AST. (This is mostly useful for testing
  266. /// purposes, where we don't want to have a function do the
  267. /// parsing and evaluating for us at the same time.)
  268. pub fn get_ast(&self) -> &RefCell<ASTArena> {
  269. &self.ast
  270. }
  271. /// Look up a `Name` in the provided `Env`. This will result in
  272. /// either a `Thunk` (i.e. the named value) or an error that
  273. /// indicates the missing name.
  274. fn lookup(&self, env: &Env, name: Name) -> Result<Thunk, Error> {
  275. if let Some(env) = env {
  276. if let Some(ne) = env.vars.get(&name) {
  277. Ok(ne.clone())
  278. } else {
  279. self.lookup(&env.parent, name)
  280. }
  281. } else {
  282. match self.root_scope.borrow().get(&name) {
  283. None => bail!("no such thing: {}", &self.ast.borrow()[name]),
  284. Some(ne) => Ok(ne.clone()),
  285. }
  286. }
  287. }
  288. /// Evaluate this string as a standalone program, writing the
  289. /// results to stdout.
  290. pub fn run(&self, src: &str) -> Result<(), Error> {
  291. let lexed = crate::lexer::tokens(src);
  292. let stmts = self.parser.parse(&mut self.ast.borrow_mut(), lexed).map_err(|err| anyhow!("Got {:?}", err))?;
  293. let mut stdout = io::stdout();
  294. for stmt in stmts {
  295. self.execute(&stmt, &mut stdout)?;
  296. }
  297. Ok(())
  298. }
  299. /// Evaluate this string as a fragment in a REPL, writing the
  300. /// results to stdout. One way this differs from the standalone
  301. /// program is that it actually tries parsing twice: first it
  302. /// tries parsing the fragment normally, and then if that doesn't
  303. /// work it tries adding a `puts` ahead of it: this is hacky, but
  304. /// it allows the REPL to respond by printing values when someone
  305. /// simply types an expression.
  306. pub fn run_repl(&self, src: &str) -> Result<(), Error> {
  307. let lexed = crate::lexer::tokens(src);
  308. let stmts = {
  309. let mut ast = self.ast.borrow_mut();
  310. self.parser.parse(&mut ast, lexed)
  311. };
  312. let stmts = match stmts {
  313. Ok(stmts) => stmts,
  314. Err(err) => {
  315. let with_puts = format!("puts {}", src);
  316. let lexed = crate::lexer::tokens(&with_puts);
  317. if let Ok(stmts) = self.parser.parse(&mut self.ast.borrow_mut(), lexed) {
  318. stmts
  319. } else {
  320. bail!("{:?}", err);
  321. }
  322. }
  323. };
  324. for stmt in stmts {
  325. self.execute(&stmt, io::stdout())?;
  326. }
  327. Ok(())
  328. }
  329. /// Autocomplete this name. This doesn't make use of any
  330. /// contextual information (e.g. like function arguments or
  331. /// `let`-bound names) but instead tries to complete based
  332. /// entirely on the things in root scope.
  333. pub fn autocomplete(&self, fragment: &str, at_beginning: bool) -> Vec<String> {
  334. let mut possibilities = Vec::new();
  335. for name in self.root_scope.borrow().keys() {
  336. if self.ast.borrow()[*name].starts_with(fragment) {
  337. possibilities.push(self.ast.borrow()[*name].to_string());
  338. }
  339. }
  340. if at_beginning && "puts".starts_with(fragment) {
  341. possibilities.push("puts ".to_owned());
  342. }
  343. possibilities
  344. }
  345. /// Execute this statement, writing any output to the provided
  346. /// output writer. Right now, this will always start in root
  347. /// scope: there are no statements within functions.
  348. pub fn execute(&self, stmt: &Stmt, mut output: impl io::Write) -> Result<(), Error> {
  349. match stmt {
  350. // Evaluate the provided expression _all the way_
  351. // (i.e. recurisvely, not to WHNF) and write its
  352. // representation to the output.
  353. Stmt::Puts(expr) => {
  354. let val = self.eval(*expr, &None)?;
  355. let val = self.force(val)?;
  356. writeln!(output, "{}", val.to_string()).unwrap();
  357. }
  358. // Look up the provided name, and if it's not already
  359. // forced completely, then force it completely and
  360. // re-insert this name with the forced version.
  361. Stmt::Fix(name) => {
  362. let val = match self.lookup(&None, *name)? {
  363. Thunk::Expr(e, env) => self.eval(e, &env)?,
  364. // we need to handle this case in case it's
  365. // already in WHNF (e.g. a tuple whose elements
  366. // are not yet values)
  367. Thunk::Value(v) => v,
  368. // if it's not an expr or val, then our work here
  369. // is done
  370. _ => return Ok(()),
  371. };
  372. let val = self.force(val)?;
  373. self.root_scope
  374. .borrow_mut()
  375. .insert(*name, Thunk::Value(val));
  376. }
  377. // assign a given expression to a name, forcing it to a
  378. // value if the assignment is `fixed`.
  379. Stmt::Assn(fixed, name, expr) => {
  380. let thunk = if *fixed {
  381. let val = self.eval(*expr, &None)?;
  382. let val = self.force(val)?;
  383. Thunk::Value(val)
  384. } else {
  385. Thunk::Expr(*expr, None)
  386. };
  387. self.root_scope.borrow_mut().insert(*name, thunk);
  388. }
  389. // assign a simple disjunction of strings to a name,
  390. // forcing it to a value if the assignment is `fixed`.
  391. Stmt::LitAssn(fixed, name, strs) => {
  392. if *fixed {
  393. let choice = &strs[self.rand.borrow_mut().gen_range(0..strs.len())];
  394. self.root_scope.borrow_mut().insert(
  395. *name,
  396. Thunk::Value(Value::Lit(Literal::Str(choice.clone()))),
  397. );
  398. return Ok(());
  399. }
  400. let choices = strs
  401. .iter()
  402. .map(|s| Choice {
  403. weight: None,
  404. value: self
  405. .ast
  406. .borrow_mut()
  407. .add_expr(Expr::Lit(Literal::Str(s.clone()))),
  408. })
  409. .collect();
  410. let choices = self.ast.borrow_mut().add_expr(Expr::Chc(choices));
  411. self.root_scope
  412. .borrow_mut()
  413. .insert(*name, Thunk::Expr(choices, None));
  414. }
  415. }
  416. Ok(())
  417. }
  418. /// Given a value, force it recursively.
  419. fn force(&self, val: Value) -> Result<Value, Error> {
  420. match val {
  421. Value::Tup(values) => Ok(Value::Tup(
  422. values
  423. .into_iter()
  424. .map(|t| {
  425. let v = self.hnf(&t)?;
  426. let v = self.force(v)?;
  427. Ok(Thunk::Value(v))
  428. })
  429. .collect::<Result<Vec<Thunk>, Error>>()?,
  430. )),
  431. _ => Ok(val),
  432. }
  433. }
  434. /// Given a thunk, force it to WHNF.
  435. fn hnf(&self, thunk: &Thunk) -> Result<Value, Error> {
  436. match thunk {
  437. Thunk::Expr(expr, env) => self.eval(*expr, env),
  438. Thunk::Value(val) => Ok(val.clone()),
  439. Thunk::Builtin(b) => Ok(Value::Builtin(b)),
  440. }
  441. }
  442. /// Given an `ExprRef` and an environment, fetch that expression
  443. /// and then evalute it in that environment
  444. fn eval(&self, expr_ref: ExprRef, env: &Env) -> Result<Value, Error> {
  445. let expr = &self.ast.borrow()[expr_ref];
  446. match expr {
  447. // literals should be mostly cheap-ish to copy, so a
  448. // literal evaluates to a `Value` that's a copy of the
  449. // literal
  450. Expr::Lit(l) => Ok(Value::Lit(l.clone())),
  451. // `Nil` evalutes to `Nil`
  452. Expr::Nil => Ok(Value::Nil),
  453. // When a variable is used, we should look it up and
  454. // evaluate it to WHNF
  455. Expr::Var(v) => self.hnf(&self.lookup(env, *v)?),
  456. // for a catenation, we should fully evaluate all the
  457. // expressions, convert them to strings, and concatenate
  458. // them all.
  459. Expr::Cat(cat) => {
  460. // if we ever have a catentation of one, then don't
  461. // bother with the string: just evaluate the
  462. // expression.
  463. if cat.len() == 1 {
  464. self.eval(cat[0], env)
  465. } else {
  466. let mut buf = String::new();
  467. for expr in cat {
  468. let val = self.eval(*expr, env)?;
  469. let val = self.force(val)?;
  470. buf.push_str(&val.to_string());
  471. }
  472. Ok(Value::Lit(Literal::Str(buf)))
  473. }
  474. }
  475. // for choices, we should choose one with the appropriate
  476. // frequency and then evaluate it
  477. Expr::Chc(choices) => {
  478. // if we ever have only one choice, well, choose it:
  479. if choices.len() == 1 {
  480. self.eval(choices[0].value, env)
  481. } else {
  482. self.choose(choices, env)
  483. }
  484. }
  485. // for a tuple, we return a tuple of thunks to begin with,
  486. // to make sure that the values contained within are
  487. // appropriately lazy
  488. Expr::Tup(values) => Ok(Value::Tup(
  489. values
  490. .iter()
  491. .map(|v| Thunk::Expr(*v, env.clone()))
  492. .collect::<Vec<Thunk>>(),
  493. )),
  494. // for a range, choose randomly between the start and end
  495. // expressions
  496. Expr::Range(from, to) => {
  497. let from = self.eval(*from, env)?.as_num()?;
  498. let to = self.eval(*to, env)?.as_num()?;
  499. Ok(Value::Lit(Literal::Num(
  500. self.rand.borrow_mut().gen_range(from..=to),
  501. )))
  502. }
  503. // for a function, return a closure (i.e. the function
  504. // body paired with the current environment)
  505. Expr::Fun(_) => Ok(Value::Closure(Closure {
  506. func: expr_ref,
  507. scope: env.clone(),
  508. })),
  509. // for application, make sure the thing we're applying is
  510. // either a closure (i.e. the result of evaluating a
  511. // function) or a builtin, and then handle it
  512. // appropriately
  513. Expr::Ap(func, val) => match self.eval(*func, env)? {
  514. Value::Closure(c) => {
  515. let scrut = Thunk::Expr(*val, env.clone());
  516. self.eval_closure(&c, scrut)
  517. }
  518. Value::Builtin(builtin) => (builtin.callback)(self, *val, env),
  519. _ => bail!("Bad function: {:?}", func),
  520. },
  521. // for a let-expression, create a new scope, add the new
  522. // name to it (optionally forcing it if `fixed`) and then
  523. // evaluate the body within that scope.
  524. Expr::Let(fixed, name, val, body) => {
  525. let mut new_scope = HashMap::new();
  526. if *fixed {
  527. let val = self.eval(*val, env)?;
  528. let val = self.force(val)?;
  529. new_scope.insert(*name, Thunk::Value(val));
  530. } else {
  531. new_scope.insert(*name, Thunk::Expr(*val, env.clone()));
  532. };
  533. let new_scope = Rc::new(Scope {
  534. vars: new_scope,
  535. parent: env.clone(),
  536. });
  537. self.eval(*body, &Some(new_scope))
  538. }
  539. }
  540. }
  541. /// Evaluate a closure as applied to a given argument.
  542. ///
  543. /// There's a very subtle thing going on here: when we apply a
  544. /// closure to an expression, we should evaluate that expression
  545. /// _as far as we need to and no further_. That's why the `scrut`
  546. /// argument here is mutable: to start with, it'll be a
  547. /// `Thunk::Expr`. If the function uses a wildcard or variable
  548. /// match, it'll stay that way, but if we start matching against
  549. /// it, we'll evaluate it at least to WHNF to find out whether it
  550. /// maches, and _sometimes_ a little further.
  551. ///
  552. /// Here's where it gets tricky: we need to maintain that
  553. /// evaluation between branches so that we don't get Schrödinger's
  554. /// patterns. An example where that might work poorly if we're not
  555. /// careful is here:
  556. ///
  557. /// ```ignore
  558. /// {Foo => "1"; Foo => "2"; _ => "..."}.(Foo | Bar)
  559. /// ```
  560. ///
  561. /// It should be impossible to get `"2"` in this case. That means
  562. /// that we need to force the argument _and keep branching against
  563. /// the forced argument_. But we also want the following to still
  564. /// contain non-determinism:
  565. ///
  566. /// ```ignore
  567. /// {<Foo, x> => x x "!"; <Bar, x> => x x "?"}.<Foo | Bar, "a" | "b">
  568. /// ```
  569. ///
  570. /// The above program should print one of "aa!", "bb!", "aa?", or
  571. /// "bb?". That means it needs to
  572. /// 1. force the argument first to `<_, _>`, to make sure it's a
  573. /// two-element tuple
  574. /// 2. force the first element of the tuple to `Foo` or `Bar` to
  575. /// discriminate on it, but
  576. /// 3. _not_ force the second element of the tuple, because we
  577. /// want it to vary from invocation to invocation.
  578. ///
  579. /// So the way we do this is, we start by representing the
  580. /// argument as a `Thunk::Expr`, but allow the pattern-matching
  581. /// function to mutably replace it with progressively more
  582. /// evaluated versions of the same expression, and then that's the
  583. /// thing we put into scope in the body of the function.
  584. fn eval_closure(&self, closure: &Closure, mut scrut: Thunk) -> Result<Value, Error> {
  585. let ast = self.ast.borrow();
  586. let cases = match &ast[closure.func] {
  587. Expr::Fun(cases) => cases,
  588. // see the note attached to the definition of `Closure`
  589. _ => bail!("INVARIANT FAILED"),
  590. };
  591. // for each case
  592. for c in cases {
  593. // build a set of potential bindings, which `match_pat`
  594. // will update if it finds matching variables
  595. let mut bindings = Vec::new();
  596. if !self.match_pat(&c.pat, &mut scrut, &mut bindings)? {
  597. // if we didn't match, we don't care about any
  598. // bindings we've found: simply skip it
  599. continue;
  600. }
  601. // build a new scope from the bindings discovered
  602. let mut new_scope = HashMap::new();
  603. for (name, binding) in bindings {
  604. new_scope.insert(name, binding);
  605. }
  606. let new_scope = Rc::new(Scope {
  607. vars: new_scope,
  608. parent: closure.scope.clone(),
  609. });
  610. // and now evaluate the chosen branch body in the
  611. // newly-created scope
  612. return self.eval(c.expr, &Some(new_scope));
  613. }
  614. // we couldn't find a matching pattern, so throw an error
  615. bail!("No pattern in {:?} matched {:?}", cases, scrut);
  616. }
  617. /// attempt to match the thunk `scrut` against the pattern
  618. /// `pat`. If it matched, then it'll return `Ok(true)`, if it
  619. /// didn't, it'll return `Ok(false)`, and (because it might need
  620. /// to do incremental evaluation to check if the pattern matches)
  621. /// it'll return an error if forcing parts of the expression
  622. /// returns an error. The `bindings` vector will be filled with
  623. /// name-thunk pairs based on the pattern: if this returns
  624. /// `Ok(true)`, then those are the thunks that should be bound to
  625. /// names in the context, but otherwise those bindings can be
  626. /// safely ignored.
  627. fn match_pat(
  628. &self,
  629. pat: &Pat,
  630. scrut: &mut Thunk,
  631. bindings: &mut Vec<(Name, Thunk)>,
  632. ) -> Result<bool, Error> {
  633. if let Pat::Var(v) = pat {
  634. bindings.push((*v, scrut.clone()));
  635. return Ok(true);
  636. }
  637. if let Pat::Wildcard = pat {
  638. return Ok(true);
  639. }
  640. // if it's not just a variable, then we'll need to make sure
  641. // we've evaluated `scrut` at least one level from here
  642. if let Thunk::Expr(e, env) = scrut {
  643. *scrut = Thunk::Value(self.eval(*e, env)?)
  644. };
  645. // now we can match deeper patterns, at least a little
  646. match pat {
  647. // literals match if the thunk is an identical literal
  648. Pat::Lit(lhs) => {
  649. if let Thunk::Value(Value::Lit(rhs)) = scrut {
  650. Ok(lhs == rhs)
  651. } else {
  652. Ok(false)
  653. }
  654. }
  655. // tuples match if the thunk evaluates to a tuple of the
  656. // same size, and if all the patterns in the tuple match
  657. // the thunks in the expression
  658. Pat::Tup(pats) => {
  659. if let Thunk::Value(Value::Tup(thunks)) = scrut {
  660. if pats.len() != thunks.len() {
  661. return Ok(false);
  662. }
  663. for (p, t) in pats.iter().zip(thunks) {
  664. if !self.match_pat(p, t, bindings)? {
  665. return Ok(false);
  666. }
  667. }
  668. Ok(true)
  669. } else {
  670. Ok(false)
  671. }
  672. }
  673. // otherwise, Does Not Match
  674. _ => Ok(false),
  675. }
  676. }
  677. // this chooses an expressino from a choice, taking into account
  678. // the weights
  679. fn choose(&self, choices: &[Choice], env: &Env) -> Result<Value, Error> {
  680. let max = choices.iter().map(Choice::weight).sum();
  681. let mut choice = self.rand.borrow_mut().gen_range(0..max);
  682. for ch in choices {
  683. if choice < ch.weight() {
  684. return self.eval(ch.value, env);
  685. }
  686. choice -= ch.weight();
  687. }
  688. // if we got here, it means our math was wrong
  689. bail!("unreachable")
  690. }
  691. }