|
@@ -11,6 +11,36 @@ macro_rules! bail {
|
|
($fmt:expr, $($e:expr),*) => { return Err(Error { message: format!($fmt, $($e),*), }) }
|
|
($fmt:expr, $($e:expr),*) => { return Err(Error { message: format!($fmt, $($e),*), }) }
|
|
}
|
|
}
|
|
|
|
|
|
|
|
+#[derive(Debug)]
|
|
|
|
+pub struct Error {
|
|
|
|
+ message: String,
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+impl From<lalrpop_util::ParseError<usize, crate::lexer::Token<'_>, crate::lexer::LexerError>>
|
|
|
|
+ for Error
|
|
|
|
+{
|
|
|
|
+ fn from(
|
|
|
|
+ err: lalrpop_util::ParseError<usize, crate::lexer::Token<'_>, crate::lexer::LexerError>,
|
|
|
|
+ ) -> Error {
|
|
|
|
+ Error {
|
|
|
|
+ message: format!("{:?}", err),
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+impl fmt::Display for Error {
|
|
|
|
+ fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
|
|
|
|
+ write!(fmt, "{}", self.message)
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+impl std::error::Error for Error {}
|
|
|
|
+
|
|
|
|
+/// A `Value` is a representation of the resut of evaluation. Note
|
|
|
|
+/// that a `Value` is a representation of something in _weak head
|
|
|
|
+/// normal form_: i.e. for compound expressions (right now just
|
|
|
|
+/// tuples) it might contain other values but it might contain
|
|
|
|
+/// unevaluated expressions as well.
|
|
#[derive(Debug, Clone)]
|
|
#[derive(Debug, Clone)]
|
|
pub enum Value {
|
|
pub enum Value {
|
|
Lit(Literal),
|
|
Lit(Literal),
|
|
@@ -20,7 +50,14 @@ pub enum Value {
|
|
Nil,
|
|
Nil,
|
|
}
|
|
}
|
|
|
|
|
|
|
|
+impl fmt::Display for Value {
|
|
|
|
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
|
|
+ self.with_str(|s| write!(f, "{}", s))
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+
|
|
impl Value {
|
|
impl Value {
|
|
|
|
+ /// Convert this value to a Rust integer, failing otherwise
|
|
fn as_num(&self) -> Result<i64, Error> {
|
|
fn as_num(&self) -> Result<i64, Error> {
|
|
match self {
|
|
match self {
|
|
Value::Lit(Literal::Num(n)) => Ok(*n),
|
|
Value::Lit(Literal::Num(n)) => Ok(*n),
|
|
@@ -28,6 +65,7 @@ impl Value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
+ /// Convert this value to a Rust string, failing otherwise
|
|
fn as_str(&self) -> Result<&str, Error> {
|
|
fn as_str(&self) -> Result<&str, Error> {
|
|
match self {
|
|
match self {
|
|
Value::Lit(Literal::Str(s)) => Ok(s),
|
|
Value::Lit(Literal::Str(s)) => Ok(s),
|
|
@@ -35,6 +73,7 @@ impl Value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
+ /// Convert this value to a Rust slice, failing otherwise
|
|
fn as_tup(&self) -> Result<&[Thunk], Error> {
|
|
fn as_tup(&self) -> Result<&[Thunk], Error> {
|
|
match self {
|
|
match self {
|
|
Value::Tup(vals) => Ok(vals),
|
|
Value::Tup(vals) => Ok(vals),
|
|
@@ -42,6 +81,7 @@ impl Value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
+ /// Convert this value to a closure, failing otherwise
|
|
fn as_closure(&self) -> Result<&Closure, Error> {
|
|
fn as_closure(&self) -> Result<&Closure, Error> {
|
|
match self {
|
|
match self {
|
|
Value::Closure(closure) => Ok(closure),
|
|
Value::Closure(closure) => Ok(closure),
|
|
@@ -49,6 +89,11 @@ impl Value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
+ /// Call the provided function with the string representation of
|
|
|
|
+ /// this value. Note that this _will not force the value_ if it's
|
|
|
|
+ /// not completely forced already: indeed, this can't, since it
|
|
|
|
+ /// doesn't have access to the `State`. Unevaluated fragments of
|
|
|
|
+ /// the value will be printed as `#<unevaluated>`.
|
|
fn with_str<U>(&self, f: impl FnOnce(&str) -> U) -> U {
|
|
fn with_str<U>(&self, f: impl FnOnce(&str) -> U) -> U {
|
|
match self {
|
|
match self {
|
|
Value::Nil => f(""),
|
|
Value::Nil => f(""),
|
|
@@ -77,42 +122,28 @@ impl Value {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
-impl fmt::Display for Value {
|
|
|
|
- fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
|
|
- self.with_str(|s| write!(f, "{}", s))
|
|
|
|
- }
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
|
|
+/// A representation of a builtin function implemented in Rust. This
|
|
|
|
+/// will be inserted into the global scope under the name provided as
|
|
|
|
+/// `name`.
|
|
pub struct BuiltinFunc {
|
|
pub struct BuiltinFunc {
|
|
|
|
+ /// The name of the builtin: this is used in error messages, in
|
|
|
|
+ /// printing the value (e.g. in the case of `puts some-builtin`),
|
|
|
|
+ /// and as the Matzo identifier used for this function.
|
|
name: &'static str,
|
|
name: &'static str,
|
|
|
|
+ /// The callback here is the Rust implementation of the function,
|
|
|
|
+ /// where the provided `ExprRef` is the argument to the function.
|
|
callback: &'static dyn Fn(&State, ExprRef, &Env) -> Result<Value, Error>,
|
|
callback: &'static dyn Fn(&State, ExprRef, &Env) -> Result<Value, Error>,
|
|
}
|
|
}
|
|
|
|
|
|
-#[derive(Debug)]
|
|
|
|
-pub struct Error {
|
|
|
|
- message: String,
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-impl From<lalrpop_util::ParseError<usize, crate::lexer::Token<'_>, crate::lexer::LexerError>>
|
|
|
|
- for Error
|
|
|
|
-{
|
|
|
|
- fn from(
|
|
|
|
- err: lalrpop_util::ParseError<usize, crate::lexer::Token<'_>, crate::lexer::LexerError>,
|
|
|
|
- ) -> Error {
|
|
|
|
- Error {
|
|
|
|
- message: format!("{:?}", err),
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-impl fmt::Display for Error {
|
|
|
|
|
|
+impl fmt::Debug for BuiltinFunc {
|
|
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
|
|
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
|
|
- write!(fmt, "{}", self.message)
|
|
|
|
|
|
+ writeln!(fmt, "BuiltinFunc {{ name: {:?}, ... }}", self.name)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
-impl std::error::Error for Error {}
|
|
|
|
-
|
|
|
|
|
|
+/// The list of builtins provided at startup.
|
|
|
|
+///
|
|
|
|
+/// TODO: move this to a separate file and clean it up
|
|
const BUILTINS: &[BuiltinFunc] = &[
|
|
const BUILTINS: &[BuiltinFunc] = &[
|
|
BuiltinFunc {
|
|
BuiltinFunc {
|
|
name: "rep",
|
|
name: "rep",
|
|
@@ -202,12 +233,12 @@ const BUILTINS: &[BuiltinFunc] = &[
|
|
},
|
|
},
|
|
];
|
|
];
|
|
|
|
|
|
-impl fmt::Debug for BuiltinFunc {
|
|
|
|
- fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
|
|
|
|
- writeln!(fmt, "BuiltinFunc {{ name: {:?}, ... }}", self.name)
|
|
|
|
- }
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
|
|
+/// The name `Thunk` is a bit of a misnomer here: this is
|
|
|
|
+/// _potentially_ a `Thunk`, but represents anything that can be
|
|
|
|
+/// stored in a variable: it might be an unevaluated expression (along
|
|
|
|
+/// with the environment where it should be evaluated), or it might be
|
|
|
|
+/// a partially- or fully-forced value, or it might be a builtin
|
|
|
|
+/// function.
|
|
#[derive(Debug, Clone)]
|
|
#[derive(Debug, Clone)]
|
|
pub enum Thunk {
|
|
pub enum Thunk {
|
|
Expr(ExprRef, Env),
|
|
Expr(ExprRef, Env),
|
|
@@ -215,23 +246,46 @@ pub enum Thunk {
|
|
Builtin(&'static BuiltinFunc),
|
|
Builtin(&'static BuiltinFunc),
|
|
}
|
|
}
|
|
|
|
|
|
|
|
+/// An environment is either `None` (i.e. in the root scope) or `Some`
|
|
|
|
+/// of some reference-counted scope (since those scopes might be
|
|
|
|
+/// shared in several places, e.g. as pointers in thunks or closures).
|
|
type Env = Option<Rc<Scope>>;
|
|
type Env = Option<Rc<Scope>>;
|
|
|
|
+
|
|
|
|
+/// A `Scope` represents a _non-root_ scope (since the root scope is
|
|
|
|
+/// treated in a special way) and contains a map from variables to
|
|
|
|
+/// `Thunk`s, along with a parent pointer.
|
|
#[derive(Debug)]
|
|
#[derive(Debug)]
|
|
pub struct Scope {
|
|
pub struct Scope {
|
|
vars: HashMap<Name, Thunk>,
|
|
vars: HashMap<Name, Thunk>,
|
|
parent: Env,
|
|
parent: Env,
|
|
}
|
|
}
|
|
|
|
|
|
|
|
+/// A `Closure` is a pointer to the expression that represents a
|
|
|
|
+/// function implementation along with the scope in which it was
|
|
|
|
+/// defined.
|
|
|
|
+///
|
|
|
|
+/// IMPORTANT INVARIANT: the `func` here should be an `ExprRef` which
|
|
|
|
+/// references a `Func`. The reason we don't copy the `Func` in is
|
|
|
|
+/// because, well, that'd be copying, and we can bypass that, but we
|
|
|
|
+/// have to maintain that invariant explicitly, otherwise we'll panic.
|
|
#[derive(Debug, Clone)]
|
|
#[derive(Debug, Clone)]
|
|
pub struct Closure {
|
|
pub struct Closure {
|
|
func: ExprRef,
|
|
func: ExprRef,
|
|
scope: Env,
|
|
scope: Env,
|
|
}
|
|
}
|
|
|
|
|
|
|
|
+/// A `State` contains all the interpreter state needed to run a
|
|
|
|
+/// `Matzo` program.
|
|
pub struct State {
|
|
pub struct State {
|
|
|
|
+ /// An `ASTArena` that contains all the packed information that
|
|
|
|
+ /// results from parsing a program.
|
|
ast: RefCell<ASTArena>,
|
|
ast: RefCell<ASTArena>,
|
|
|
|
+ /// The root scope of the program, which contains all the
|
|
|
|
+ /// top-level definitions and builtins.
|
|
root_scope: RefCell<HashMap<Name, Thunk>>,
|
|
root_scope: RefCell<HashMap<Name, Thunk>>,
|
|
|
|
+ /// The thread-local RNG.
|
|
rand: RefCell<rand::rngs::ThreadRng>,
|
|
rand: RefCell<rand::rngs::ThreadRng>,
|
|
|
|
+ /// The instantiated parser used to parse Matzo programs
|
|
parser: crate::grammar::StmtsParser,
|
|
parser: crate::grammar::StmtsParser,
|
|
}
|
|
}
|
|
|
|
|
|
@@ -242,6 +296,8 @@ impl Default for State {
|
|
}
|
|
}
|
|
|
|
|
|
impl State {
|
|
impl State {
|
|
|
|
+ /// This initializes a new `State` and adds all the builtin
|
|
|
|
+ /// functions to the root scope
|
|
pub fn new() -> State {
|
|
pub fn new() -> State {
|
|
let s = State {
|
|
let s = State {
|
|
root_scope: RefCell::new(HashMap::new()),
|
|
root_scope: RefCell::new(HashMap::new()),
|
|
@@ -258,10 +314,16 @@ impl State {
|
|
s
|
|
s
|
|
}
|
|
}
|
|
|
|
|
|
|
|
+ /// Get the underlying AST. (This is mostly useful for testing
|
|
|
|
+ /// purposes, where we don't want to have a function do the
|
|
|
|
+ /// parsing and evaluating for us at the same time.)
|
|
pub fn get_ast(&self) -> &RefCell<ASTArena> {
|
|
pub fn get_ast(&self) -> &RefCell<ASTArena> {
|
|
&self.ast
|
|
&self.ast
|
|
}
|
|
}
|
|
|
|
|
|
|
|
+ /// Look up a `Name` in the provided `Env`. This will result in
|
|
|
|
+ /// either a `Thunk` (i.e. the named value) or an error that
|
|
|
|
+ /// indicates the missing name.
|
|
fn lookup(&self, env: &Env, name: Name) -> Result<Thunk, Error> {
|
|
fn lookup(&self, env: &Env, name: Name) -> Result<Thunk, Error> {
|
|
if let Some(env) = env {
|
|
if let Some(env) = env {
|
|
if let Some(ne) = env.vars.get(&name) {
|
|
if let Some(ne) = env.vars.get(&name) {
|
|
@@ -277,6 +339,8 @@ impl State {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
+ /// Evaluate this string as a standalone program, writing the
|
|
|
|
+ /// results to stdout.
|
|
pub fn run(&self, src: &str) -> Result<(), Error> {
|
|
pub fn run(&self, src: &str) -> Result<(), Error> {
|
|
let lexed = crate::lexer::tokens(src);
|
|
let lexed = crate::lexer::tokens(src);
|
|
let stmts = self.parser.parse(&mut self.ast.borrow_mut(), lexed)?;
|
|
let stmts = self.parser.parse(&mut self.ast.borrow_mut(), lexed)?;
|
|
@@ -287,6 +351,13 @@ impl State {
|
|
Ok(())
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
|
|
|
|
+ /// Evaluate this string as a fragment in a REPL, writing the
|
|
|
|
+ /// results to stdout. One way this differs from the standalone
|
|
|
|
+ /// program is that it actually tries parsing twice: first it
|
|
|
|
+ /// tries parsing the fragment normally, and then if that doesn't
|
|
|
|
+ /// work it tries adding a `puts` ahead of it: this is hacky, but
|
|
|
|
+ /// it allows the REPL to respond by printing values when someone
|
|
|
|
+ /// simply types an expression.
|
|
pub fn run_repl(&self, src: &str) -> Result<(), Error> {
|
|
pub fn run_repl(&self, src: &str) -> Result<(), Error> {
|
|
let lexed = crate::lexer::tokens(src);
|
|
let lexed = crate::lexer::tokens(src);
|
|
let stmts = {
|
|
let stmts = {
|
|
@@ -311,6 +382,10 @@ impl State {
|
|
Ok(())
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
|
|
|
|
+ /// Autocomplete this name. This doesn't make use of any
|
|
|
|
+ /// contextual information (e.g. like function arguments or
|
|
|
|
+ /// `let`-bound names) but instead tries to complete based
|
|
|
|
+ /// entirely on the things in root scope.
|
|
pub fn autocomplete(&self, fragment: &str, at_beginning: bool) -> Vec<String> {
|
|
pub fn autocomplete(&self, fragment: &str, at_beginning: bool) -> Vec<String> {
|
|
let mut possibilities = Vec::new();
|
|
let mut possibilities = Vec::new();
|
|
for name in self.root_scope.borrow().keys() {
|
|
for name in self.root_scope.borrow().keys() {
|
|
@@ -324,40 +399,55 @@ impl State {
|
|
possibilities
|
|
possibilities
|
|
}
|
|
}
|
|
|
|
|
|
|
|
+ /// Execute this statement, writing any output to the provided
|
|
|
|
+ /// output writer. Right now, this will always start in root
|
|
|
|
+ /// scope: there are no statements within functions.
|
|
pub fn execute(&self, stmt: &Stmt, mut output: impl io::Write) -> Result<(), Error> {
|
|
pub fn execute(&self, stmt: &Stmt, mut output: impl io::Write) -> Result<(), Error> {
|
|
match stmt {
|
|
match stmt {
|
|
|
|
+ // Evaluate the provided expression _all the way_
|
|
|
|
+ // (i.e. recurisvely, not to WHNF) and write its
|
|
|
|
+ // representation to the output.
|
|
Stmt::Puts(expr) => {
|
|
Stmt::Puts(expr) => {
|
|
let val = self.eval(*expr, &None)?;
|
|
let val = self.eval(*expr, &None)?;
|
|
let val = self.force(val)?;
|
|
let val = self.force(val)?;
|
|
writeln!(output, "{}", val.to_string()).unwrap();
|
|
writeln!(output, "{}", val.to_string()).unwrap();
|
|
}
|
|
}
|
|
|
|
|
|
|
|
+ // Look up the provided name, and if it's not already
|
|
|
|
+ // forced completely, then force it completely and
|
|
|
|
+ // re-insert this name with the forced version.
|
|
Stmt::Fix(name) => {
|
|
Stmt::Fix(name) => {
|
|
- let (expr, env) = match self.lookup(&None, *name)? {
|
|
|
|
- Thunk::Expr(e, env) => (e, env),
|
|
|
|
- // if it's not an expr, then our work here is done
|
|
|
|
|
|
+ let val = match self.lookup(&None, *name)? {
|
|
|
|
+ Thunk::Expr(e, env) => self.eval(e, &env)?,
|
|
|
|
+ // we need to handle this case in case it's
|
|
|
|
+ // already in WHNF (e.g. a tuple whose elements
|
|
|
|
+ // are not yet values)
|
|
|
|
+ Thunk::Value(v) => v,
|
|
|
|
+ // if it's not an expr or val, then our work here
|
|
|
|
+ // is done
|
|
_ => return Ok(()),
|
|
_ => return Ok(()),
|
|
};
|
|
};
|
|
- let val = self.eval(expr, &env)?;
|
|
|
|
let val = self.force(val)?;
|
|
let val = self.force(val)?;
|
|
self.root_scope
|
|
self.root_scope
|
|
.borrow_mut()
|
|
.borrow_mut()
|
|
.insert(*name, Thunk::Value(val));
|
|
.insert(*name, Thunk::Value(val));
|
|
}
|
|
}
|
|
|
|
|
|
|
|
+ // assign a given expression to a name, forcing it to a
|
|
|
|
+ // value if the assignment is `fixed`.
|
|
Stmt::Assn(fixed, name, expr) => {
|
|
Stmt::Assn(fixed, name, expr) => {
|
|
- if *fixed {
|
|
|
|
|
|
+ let thunk = if *fixed {
|
|
let val = self.eval(*expr, &None)?;
|
|
let val = self.eval(*expr, &None)?;
|
|
- self.root_scope
|
|
|
|
- .borrow_mut()
|
|
|
|
- .insert(*name, Thunk::Value(val));
|
|
|
|
|
|
+ let val = self.force(val)?;
|
|
|
|
+ Thunk::Value(val)
|
|
} else {
|
|
} else {
|
|
- self.root_scope
|
|
|
|
- .borrow_mut()
|
|
|
|
- .insert(*name, Thunk::Expr(*expr, None));
|
|
|
|
- }
|
|
|
|
|
|
+ Thunk::Expr(*expr, None)
|
|
|
|
+ };
|
|
|
|
+ self.root_scope.borrow_mut().insert(*name, thunk);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
+ // assign a simple disjunction of strings to a name,
|
|
|
|
+ // forcing it to a value if the assignment is `fixed`.
|
|
Stmt::LitAssn(fixed, name, strs) => {
|
|
Stmt::LitAssn(fixed, name, strs) => {
|
|
if *fixed {
|
|
if *fixed {
|
|
let choice = &strs[self.rand.borrow_mut().gen_range(0..strs.len())];
|
|
let choice = &strs[self.rand.borrow_mut().gen_range(0..strs.len())];
|
|
@@ -387,6 +477,7 @@ impl State {
|
|
Ok(())
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
|
|
|
|
+ /// Given a value, force it recursively.
|
|
fn force(&self, val: Value) -> Result<Value, Error> {
|
|
fn force(&self, val: Value) -> Result<Value, Error> {
|
|
match val {
|
|
match val {
|
|
Value::Tup(values) => Ok(Value::Tup(
|
|
Value::Tup(values) => Ok(Value::Tup(
|
|
@@ -403,6 +494,7 @@ impl State {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
+ /// Given a thunk, force it to WHNF.
|
|
fn hnf(&self, thunk: &Thunk) -> Result<Value, Error> {
|
|
fn hnf(&self, thunk: &Thunk) -> Result<Value, Error> {
|
|
match thunk {
|
|
match thunk {
|
|
Thunk::Expr(expr, env) => self.eval(*expr, env),
|
|
Thunk::Expr(expr, env) => self.eval(*expr, env),
|
|
@@ -411,22 +503,29 @@ impl State {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
+ /// Given an `ExprRef` and an environment, fetch that expression
|
|
|
|
+ /// and then evalute it in that environment
|
|
fn eval(&self, expr_ref: ExprRef, env: &Env) -> Result<Value, Error> {
|
|
fn eval(&self, expr_ref: ExprRef, env: &Env) -> Result<Value, Error> {
|
|
let expr = &self.ast.borrow()[expr_ref];
|
|
let expr = &self.ast.borrow()[expr_ref];
|
|
match expr {
|
|
match expr {
|
|
|
|
+ // literals should be mostly cheap-ish to copy, so a
|
|
|
|
+ // literal evaluates to a `Value` that's a copy of the
|
|
|
|
+ // literal
|
|
Expr::Lit(l) => Ok(Value::Lit(l.clone())),
|
|
Expr::Lit(l) => Ok(Value::Lit(l.clone())),
|
|
|
|
+ // `Nil` evalutes to `Nil`
|
|
Expr::Nil => Ok(Value::Nil),
|
|
Expr::Nil => Ok(Value::Nil),
|
|
|
|
|
|
- Expr::Var(v) => {
|
|
|
|
- let (e, env) = match self.lookup(env, *v)? {
|
|
|
|
- Thunk::Expr(e, env) => (e, env),
|
|
|
|
- Thunk::Value(v) => return Ok(v),
|
|
|
|
- Thunk::Builtin(b) => return Ok(Value::Builtin(b)),
|
|
|
|
- };
|
|
|
|
- self.eval(e, &env)
|
|
|
|
- }
|
|
|
|
|
|
+ // When a variable is used, we should look it up and
|
|
|
|
+ // evaluate it to WHNF
|
|
|
|
+ Expr::Var(v) => self.hnf(&self.lookup(env, *v)?),
|
|
|
|
|
|
|
|
+ // for a catenation, we should fully evaluate all the
|
|
|
|
+ // expressions, convert them to strings, and concatenate
|
|
|
|
+ // them all.
|
|
Expr::Cat(cat) => {
|
|
Expr::Cat(cat) => {
|
|
|
|
+ // if we ever have a catentation of one, then don't
|
|
|
|
+ // bother with the string: just evaluate the
|
|
|
|
+ // expression.
|
|
if cat.len() == 1 {
|
|
if cat.len() == 1 {
|
|
self.eval(cat[0], env)
|
|
self.eval(cat[0], env)
|
|
} else {
|
|
} else {
|
|
@@ -440,7 +539,10 @@ impl State {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
+ // for choices, we should choose one with the appropriate
|
|
|
|
+ // frequency and then evaluate it
|
|
Expr::Chc(choices) => {
|
|
Expr::Chc(choices) => {
|
|
|
|
+ // if we ever have only one choice, well, choose it:
|
|
if choices.len() == 1 {
|
|
if choices.len() == 1 {
|
|
self.eval(choices[0].value, env)
|
|
self.eval(choices[0].value, env)
|
|
} else {
|
|
} else {
|
|
@@ -448,6 +550,9 @@ impl State {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
+ // for a tuple, we return a tuple of thunks to begin with,
|
|
|
|
+ // to make sure that the values contained within are
|
|
|
|
+ // appropriately lazy
|
|
Expr::Tup(values) => Ok(Value::Tup(
|
|
Expr::Tup(values) => Ok(Value::Tup(
|
|
values
|
|
values
|
|
.iter()
|
|
.iter()
|
|
@@ -455,6 +560,8 @@ impl State {
|
|
.collect::<Vec<Thunk>>(),
|
|
.collect::<Vec<Thunk>>(),
|
|
)),
|
|
)),
|
|
|
|
|
|
|
|
+ // for a range, choose randomly between the start and end
|
|
|
|
+ // expressions
|
|
Expr::Range(from, to) => {
|
|
Expr::Range(from, to) => {
|
|
let from = self.eval(*from, env)?.as_num()?;
|
|
let from = self.eval(*from, env)?.as_num()?;
|
|
let to = self.eval(*to, env)?.as_num()?;
|
|
let to = self.eval(*to, env)?.as_num()?;
|
|
@@ -463,11 +570,17 @@ impl State {
|
|
)))
|
|
)))
|
|
}
|
|
}
|
|
|
|
|
|
|
|
+ // for a function, return a closure (i.e. the function
|
|
|
|
+ // body paired with the current environment)
|
|
Expr::Fun(_) => Ok(Value::Closure(Closure {
|
|
Expr::Fun(_) => Ok(Value::Closure(Closure {
|
|
func: expr_ref,
|
|
func: expr_ref,
|
|
scope: env.clone(),
|
|
scope: env.clone(),
|
|
})),
|
|
})),
|
|
|
|
|
|
|
|
+ // for application, make sure the thing we're applying is
|
|
|
|
+ // either a closure (i.e. the result of evaluating a
|
|
|
|
+ // function) or a builtin, and then handle it
|
|
|
|
+ // appropriately
|
|
Expr::Ap(func, val) => match self.eval(*func, env)? {
|
|
Expr::Ap(func, val) => match self.eval(*func, env)? {
|
|
Value::Closure(c) => {
|
|
Value::Closure(c) => {
|
|
let scrut = Thunk::Expr(*val, env.clone());
|
|
let scrut = Thunk::Expr(*val, env.clone());
|
|
@@ -477,6 +590,9 @@ impl State {
|
|
_ => bail!("Bad function: {:?}", func),
|
|
_ => bail!("Bad function: {:?}", func),
|
|
},
|
|
},
|
|
|
|
|
|
|
|
+ // for a let-expression, create a new scope, add the new
|
|
|
|
+ // name to it (optionally forcing it if `fixed`) and then
|
|
|
|
+ // evaluate the body within that scope.
|
|
Expr::Let(fixed, name, val, body) => {
|
|
Expr::Let(fixed, name, val, body) => {
|
|
let mut new_scope = HashMap::new();
|
|
let mut new_scope = HashMap::new();
|
|
if *fixed {
|
|
if *fixed {
|
|
@@ -495,19 +611,69 @@ impl State {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
+ /// Evaluate a closure as applied to a given argument.
|
|
|
|
+ ///
|
|
|
|
+ /// There's a very subtle thing going on here: when we apply a
|
|
|
|
+ /// closure to an expression, we should evaluate that expression
|
|
|
|
+ /// _as far as we need to and no further_. That's why the `scrut`
|
|
|
|
+ /// argument here is mutable: to start with, it'll be a
|
|
|
|
+ /// `Thunk::Expr`. If the function uses a wildcard or variable
|
|
|
|
+ /// match, it'll stay that way, but if we start matching against
|
|
|
|
+ /// it, we'll evaluate it at least to WHNF to find out whether it
|
|
|
|
+ /// maches, and _sometimes_ a little further.
|
|
|
|
+ ///
|
|
|
|
+ /// Here's where it gets tricky: we need to maintain that
|
|
|
|
+ /// evaluation between branches so that we don't get Schrödinger's
|
|
|
|
+ /// patterns. An example where that might work poorly if we're not
|
|
|
|
+ /// careful is here:
|
|
|
|
+ ///
|
|
|
|
+ /// ```
|
|
|
|
+ /// {Foo => "1"; Foo => "2"; _ => "..."}.(Foo | Bar)
|
|
|
|
+ /// ```
|
|
|
|
+ ///
|
|
|
|
+ /// It should be impossible to get `"2"` in this case. That means
|
|
|
|
+ /// that we need to force the argument _and keep branching against
|
|
|
|
+ /// the forced argument_. But we also want the following to still
|
|
|
|
+ /// contain non-determinism:
|
|
|
|
+ ///
|
|
|
|
+ /// ```
|
|
|
|
+ /// {<Foo, x> => x x "!"; <Bar, x> => x x "?"}.<Foo | Bar, "a" | "b">
|
|
|
|
+ /// ```
|
|
|
|
+ ///
|
|
|
|
+ /// The above program should print one of "aa!", "bb!", "aa?", or
|
|
|
|
+ /// "bb?". That means it needs to
|
|
|
|
+ /// 1. force the argument first to `<_, _>`, to make sure it's a
|
|
|
|
+ /// two-element tuple
|
|
|
|
+ /// 2. force the first element of the tuple to `Foo` or `Bar` to
|
|
|
|
+ /// discriminate on it, but
|
|
|
|
+ /// 3. _not_ force the second element of the tuple, because we
|
|
|
|
+ /// want it to vary from invocation to invocation.
|
|
|
|
+ ///
|
|
|
|
+ /// So the way we do this is, we start by representing the
|
|
|
|
+ /// argument as a `Thunk::Expr`, but allow the pattern-matching
|
|
|
|
+ /// function to mutably replace it with progressively more
|
|
|
|
+ /// evaluated versions of the same expression, and then that's the
|
|
|
|
+ /// thing we put into scope in the body of the function.
|
|
fn eval_closure(&self, closure: &Closure, mut scrut: Thunk) -> Result<Value, Error> {
|
|
fn eval_closure(&self, closure: &Closure, mut scrut: Thunk) -> Result<Value, Error> {
|
|
let ast = self.ast.borrow();
|
|
let ast = self.ast.borrow();
|
|
let cases = match &ast[closure.func] {
|
|
let cases = match &ast[closure.func] {
|
|
Expr::Fun(cases) => cases,
|
|
Expr::Fun(cases) => cases,
|
|
|
|
+ // see the note attached to the definition of `Closure`
|
|
_ => bail!("INVARIANT FAILED"),
|
|
_ => bail!("INVARIANT FAILED"),
|
|
};
|
|
};
|
|
|
|
|
|
|
|
+ // for each case
|
|
for c in cases {
|
|
for c in cases {
|
|
|
|
+ // build a set of potential bindings, which `match_pat`
|
|
|
|
+ // will update if it finds matching variables
|
|
let mut bindings = Vec::new();
|
|
let mut bindings = Vec::new();
|
|
if !self.match_pat(&c.pat, &mut scrut, &mut bindings)? {
|
|
if !self.match_pat(&c.pat, &mut scrut, &mut bindings)? {
|
|
|
|
+ // if we didn't match, we don't care about any
|
|
|
|
+ // bindings we've found: simply skip it
|
|
continue;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
+ // build a new scope from the bindings discovered
|
|
let mut new_scope = HashMap::new();
|
|
let mut new_scope = HashMap::new();
|
|
for (name, binding) in bindings {
|
|
for (name, binding) in bindings {
|
|
new_scope.insert(name, binding);
|
|
new_scope.insert(name, binding);
|
|
@@ -517,12 +683,25 @@ impl State {
|
|
vars: new_scope,
|
|
vars: new_scope,
|
|
parent: closure.scope.clone(),
|
|
parent: closure.scope.clone(),
|
|
});
|
|
});
|
|
|
|
+ // and now evaluate the chosen branch body in the
|
|
|
|
+ // newly-created scope
|
|
return self.eval(c.expr, &Some(new_scope));
|
|
return self.eval(c.expr, &Some(new_scope));
|
|
}
|
|
}
|
|
|
|
|
|
|
|
+ // we couldn't find a matching pattern, so throw an error
|
|
bail!("No pattern in {:?} matched {:?}", cases, scrut);
|
|
bail!("No pattern in {:?} matched {:?}", cases, scrut);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
+ /// attempt to match the thunk `scrut` against the pattern
|
|
|
|
+ /// `pat`. If it matched, then it'll return `Ok(true)`, if it
|
|
|
|
+ /// didn't, it'll return `Ok(false)`, and (because it might need
|
|
|
|
+ /// to do incremental evaluation to check if the pattern matches)
|
|
|
|
+ /// it'll return an error if forcing parts of the expression
|
|
|
|
+ /// returns an error. The `bindings` vector will be filled with
|
|
|
|
+ /// name-thunk pairs based on the pattern: if this returns
|
|
|
|
+ /// `Ok(true)`, then those are the thunks that should be bound to
|
|
|
|
+ /// names in the context, but otherwise those bindings can be
|
|
|
|
+ /// safely ignored.
|
|
fn match_pat(
|
|
fn match_pat(
|
|
&self,
|
|
&self,
|
|
pat: &Pat,
|
|
pat: &Pat,
|
|
@@ -544,6 +723,7 @@ impl State {
|
|
|
|
|
|
// now we can match deeper patterns, at least a little
|
|
// now we can match deeper patterns, at least a little
|
|
match pat {
|
|
match pat {
|
|
|
|
+ // literals match if the thunk is an identical literal
|
|
Pat::Lit(lhs) => {
|
|
Pat::Lit(lhs) => {
|
|
if let Thunk::Value(Value::Lit(rhs)) = scrut {
|
|
if let Thunk::Value(Value::Lit(rhs)) = scrut {
|
|
Ok(lhs == rhs)
|
|
Ok(lhs == rhs)
|
|
@@ -551,6 +731,10 @@ impl State {
|
|
Ok(false)
|
|
Ok(false)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
+
|
|
|
|
+ // tuples match if the thunk evaluates to a tuple of the
|
|
|
|
+ // same size, and if all the patterns in the tuple match
|
|
|
|
+ // the thunks in the expression
|
|
Pat::Tup(pats) => {
|
|
Pat::Tup(pats) => {
|
|
if let Thunk::Value(Value::Tup(thunks)) = scrut {
|
|
if let Thunk::Value(Value::Tup(thunks)) = scrut {
|
|
if pats.len() != thunks.len() {
|
|
if pats.len() != thunks.len() {
|
|
@@ -567,10 +751,14 @@ impl State {
|
|
Ok(false)
|
|
Ok(false)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
+
|
|
|
|
+ // otherwise, Does Not Match
|
|
_ => Ok(false),
|
|
_ => Ok(false),
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
+ // this chooses an expressino from a choice, taking into account
|
|
|
|
+ // the weights
|
|
fn choose(&self, choices: &[Choice], env: &Env) -> Result<Value, Error> {
|
|
fn choose(&self, choices: &[Choice], env: &Env) -> Result<Value, Error> {
|
|
let max = choices.iter().map(Choice::weight).sum();
|
|
let max = choices.iter().map(Choice::weight).sum();
|
|
let mut choice = self.rand.borrow_mut().gen_range(0..max);
|
|
let mut choice = self.rand.borrow_mut().gen_range(0..max);
|
|
@@ -580,6 +768,8 @@ impl State {
|
|
}
|
|
}
|
|
choice -= ch.weight();
|
|
choice -= ch.weight();
|
|
}
|
|
}
|
|
|
|
+
|
|
|
|
+ // if we got here, it means our math was wrong
|
|
bail!("unreachable")
|
|
bail!("unreachable")
|
|
}
|
|
}
|
|
}
|
|
}
|